Certaines représentations infinies des algèbres de Lie semi-simples
In this paper a construction of characteristic classes for a subfoliation is given by using Kamber-Tondeur’s techniques. For this purpose, the notion of -foliated principal bundle, and the definition of its associated characteristic homomorphism, are introduced. The relation with the characteristic homomorphism of -foliated bundles, , the results of Kamber-Tondeur on the cohomology of --algebras. Finally, Goldman’s results on the restriction of foliated bundles to the leaves of a foliation...
Given a principal ideal domain of characteristic zero, containing 1/2, and a two-cone of appropriate connectedness and dimension, we present a sufficient algebraic condition, in terms of Adams-Hilton models, for the Hopf algebra to be isomorphic with the universal enveloping algebra of some -free graded Lie algebra; as usual, stands for free part, for homology, and for the Moore loop space functor.
A Lie algebra is called 2-step nilpotent if is not abelian and lies in the center of . 2-step nilpotent Lie algebras are useful in the study of some geometric problems, and their classification has been an important problem in Lie theory. In this paper, we give a classification of 2-step nilpotent Lie algebras of dimension 9 with 2-dimensional center.