-structure on the Cohomology of the Free 2-Nilpotent Lie Algebra
Forniamo un calcolo esplicito della funzione di partizione di Kostant per algebre di Lie complesse di rango . La tecnica principale consiste nella riduzione a casi più semplici ed all'uso di funzioni generatrici.
We introduce a Lie algebra, which we call adelic -algebra. Then we construct a natural bosonic representation and show that the points of the Calogero-Moser spaces are in 1:1 correspondence with the tau-functions in this representation.
Spaces of homogeneous spherical monogenics in dimension 3 can be considered naturally as -modules. As finite-dimensional irreducible -modules, they have canonical bases which are, by construction, orthogonal. In this note, we show that these orthogonal bases form the Appell system and coincide with those constructed recently by S. Bock and K. Gürlebeck in [3]. Moreover, we obtain simple expressions of elements of these bases in terms of the Legendre polynomials.
Nous démontrons que la catégorie de von Neumann est équivalente à la catégorie des cônes autopolaires, facialement homogènes, complexes. Un cône dans un espace hilbertien réel est dit : 1) facialement homogène quand pour toute face de l’opérateur (Projection sur ) (Projection sur ) est une dérivation de (i.e. ) ; 2) complexe quand on s’est donné une structure d’algèbre de Lie complexe sur l’algèbre de Lie réelle des dérivations de , modulo son centre. Nous caractérisons les espaces...
In this work the properties of Cartan subalgebras and weight spaces of finite dimensional Lie algebras are extended to the case of Leibniz algebras. Namely, the relation between Cartan subalgebras and regular elements are described, also an analogue of Cartan s criterion of solvability is proved.
In this paper we study the BGG-categories associated to quantum groups. We prove that many properties of the ordinary BGG-category for a semisimple complex Lie algebra carry over to the quantum case. Of particular interest is the case when is a complex root of unity. Here we prove a tensor decomposition for both simple modules, projective modules, and indecomposable tilting modules. Using the known Kazhdan-Lusztig conjectures for and for finite dimensional -modules we are able to determine...