Displaying 461 – 480 of 1861

Showing per page

Family algebras.

Kirillov, A.A. (2000)

Electronic Research Announcements of the American Mathematical Society [electronic only]

Fermionic Novikov algebras admitting invariant non-degenerate symmetric bilinear forms

Zhiqi Chen, Xueqing Chen, Ming Ding (2020)

Czechoslovak Mathematical Journal

Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic type and Hamiltonian operators in the formal variational calculus. Fermionic Novikov algebras correspond to a certain Hamiltonian superoperator in a supervariable. In this paper, we show that fermionic Novikov algebras equipped with invariant non-degenerate symmetric bilinear forms are Novikov algebras.

(Finite) presentations of the Albert-Frank-Shalev Lie algebras

Claretta Carrara (2001)

Bollettino dell'Unione Matematica Italiana

In questo lavoro vengono studiate le algebre di Albert-Frank-Shalev. Queste sono algebre di Lie modulari di dimensione infinita, ottenute da un loop di certe algebre semplici di dimensione finita. Si dimostra che le algebre di Albert-Frank-Shalev sono unicamente determinate, a meno di elementi centrali o secondo centrali, da un certo quoziente finito-dimensionale. Tale risultato si ottiene dando la presentazione finita di un'algebra il cui quoziente sul secondo centro (infinito-dimensionale) è isomorfo...

Finite-dimensional Lie subalgebras of algebras with continuous inversion

Daniel Beltiţă, Karl-Hermann Neeb (2008)

Studia Mathematica

We investigate the finite-dimensional Lie groups whose points are separated by the continuous homomorphisms into groups of invertible elements of locally convex algebras with continuous inversion that satisfy an appropriate completeness condition. We find that these are precisely the linear Lie groups, that is, the Lie groups which can be faithfully represented as matrix groups. Our method relies on proving that certain finite-dimensional Lie subalgebras of algebras with continuous inversion commute...

First order calculi with values in right-universal bimodules

Andrzej Borowiec, Vladislav Kharchenko, Zbigniew Oziewicz (1997)

Banach Center Publications

The purpose of this note is to show how calculi on unital associative algebra with universal right bimodule generalize previously studied constructions by Pusz and Woronowicz [1989] and by Wess and Zumino [1990] and that in this language results are in a natural context, are easier to describe and handle. As a by-product we obtain intrinsic, coordinate-free and basis-independent generalization of the first order noncommutative differential calculi with partial derivatives.

Currently displaying 461 – 480 of 1861