Some notes about -Lie algebras.
The purpose of this paper is to study some properties of Filiform Lie Algebras (FLA) and to prove the following theorem: a FLA, of dimension n, is either derived from a Solvable Lie Algebra (SLA) of dimension n+1 or not derived from any LA.
We study some properties of generalized reduced Verma modules over -graded modular Lie superalgebras. Some properties of the generalized reduced Verma modules and coinduced modules are obtained. Moreover, invariant forms on the generalized reduced Verma modules are considered. In particular, for -graded modular Lie superalgebras of Cartan type we prove that generalized reduced Verma modules are isomorphic to mixed products of modules.
In this paper, we continue to investigate some properties of the family of finite-dimensional simple modular Lie superalgebras which were constructed by X. N. Xu, Y. Z. Zhang, L. Y. Chen (2010). For each algebra in the family, a filtration is defined and proved to be invariant under the automorphism group. Then an intrinsic property is proved by the invariance of the filtration; that is, the integer parameters in the definition of Lie superalgebras are intrinsic. Thereby, we classify these Lie...
Dirac structures are characterized in terms of their characteristic pairs defined in this note and then Poisson reductions are discussed from the point of view of Dirac structures.
We clarify some aspects of quantum group gauge theory and its recent generalisations (by T. Brzeziński and the author) to braided group gauge theory and coalgebra gauge theory. We outline the diagrammatic version of the braided case. The bosonisation of any braided group provides us a trivial principal bundle in three ways.
In this paper, by using the Composition-Diamond lemma for non-associative algebras invented by A. I. Shirshov in 1962, we give Gröbner-Shirshov bases for free Pre-Lie algebras and the universal enveloping non-associative algebra of an Akivis algebra, respectively. As applications, we show I. P. Shestakov’s result that any Akivis algebra is linear and D. Segal’s result that the set of all good words in forms a linear basis of the free Pre-Lie algebra generated by the set . For completeness,...
We construct some spectral sequences as tools for computing commutative cohomology of commutative Lie algebras in characteristic . In a first part, we focus on a Hochschild-Serre-type spectral sequence, while in a second part we obtain spectral sequences which compare Chevalley-Eilenberg-, commutative- and Leibniz cohomology. These methods are illustrated by a few computations.
A new concept of spectrum for a solvable Lie algebra of operators is introduced, extending the Taylor spectrum for commuting tuples. This spectrum has the projection property on any Lie subalgebra and, for algebras of compact operators, it may be computed by means of a variant of the classical Ringrose theorem.