Algebraic characterizations of the algebra of functions and of the Lie algebra of vector fields of a manifold
We study algebraic loop groups and affine Grassmannians in positive characteristic. The main results are normality of Schubert-varieties, the construction of line-bundles on the affine Grassmannian, and the proof that they induce line-bundles on the moduli-stack of torsors.
Une structure unimodulaire est définie sur une variété différentiable par une forme élément de volume. Différentes algèbres de Lie de dimension infinie attachées à une variété unimodulaire sont introduites et leurs idéaux étudiés. Ces idéaux sont semi-simples et de dimension infinie ; aucun idéal non trivial n’admet un idéal supplémentaire. Les dérivations de ces algèbres de Lie sont données par l’algèbre des champs de vecteurs reproduisant la forme de structure à un facteur constant près.
We show that some iterated Ore extensions have the same behaviour with respect to injective resolutions as Gorenstein commutative rings.
By using an invariant related to free Lie algebras, we give a criterion of non existence of isomorphism for the Pfaffian systems.
On présente une définition et une construction unifée des homologies et cohomologies d’algèbres et de modules sur ces algèbres et de modules sur ces algèbres dans le cas d’algèbres associatives ou commutatives ou de Lie ou de Gertsenhaber. On sépare la construction linéaire des cogèbres ou bicogèbres qui traduisent les symétries des relations de définition de la structure de la partie structure qui apparaît ici comme une codérivation de degré 1 et de carré nul de la cogèbre ou de la bicogèbre.