Hereditary and cohereditary preradicals
Zhou and Zhu have shown that if is an -angulated category and is a cluster tilting subcategory of , then the quotient category is an -abelian category. We show that if has Auslander-Reiten -angles, then has Auslander-Reiten -exact sequences.
We introduce a notion of homological projective duality for smooth algebraic varieties in dual projective spaces, a homological extension of the classical projective duality. If algebraic varieties X and Y in dual projective spaces are homologically projectively dual, then we prove that the orthogonal linear sections of X and Y admit semiorthogonal decompositions with an equivalent nontrivial component. In particular, it follows that triangulated categories of singularities of these sections are...
Let be an abelian category, or more generally a weakly idempotent complete exact category, and suppose we have two complete hereditary cotorsion pairs and in satisfying and . We show how to construct a (necessarily unique) abelian model structure on with (resp. ) as the class of cofibrant (resp. trivially cofibrant) objects, and (resp. ) as the class of fibrant (resp. trivially fibrant) objects.
A pretriangulated category is an additive category with left and right triangulations such that these two triangulations are compatible. In this paper, we first show that the idempotent completion of a left triangulated category admits a unique structure of left triangulated category and dually this is true for a right triangulated category. We then prove that the idempotent completion of a pretriangulated category has a natural structure of pretriangulated category. As an application, we show that...