Displaying 161 – 180 of 399

Showing per page

Higher-dimensional Auslander-Reiten sequences

Jiangsha Li, Jing He (2024)

Czechoslovak Mathematical Journal

Zhou and Zhu have shown that if 𝒞 is an ( n + 2 ) -angulated category and 𝒳 is a cluster tilting subcategory of 𝒞 , then the quotient category 𝒞 / 𝒳 is an n -abelian category. We show that if 𝒞 has Auslander-Reiten ( n + 2 ) -angles, then 𝒞 / 𝒳 has Auslander-Reiten n -exact sequences.

Homological projective duality

Alexander Kuznetsov (2007)

Publications Mathématiques de l'IHÉS

We introduce a notion of homological projective duality for smooth algebraic varieties in dual projective spaces, a homological extension of the classical projective duality. If algebraic varieties X and Y in dual projective spaces are homologically projectively dual, then we prove that the orthogonal linear sections of X and Y admit semiorthogonal decompositions with an equivalent nontrivial component. In particular, it follows that triangulated categories of singularities of these sections are...

How to construct a Hovey triple from two cotorsion pairs

James Gillespie (2015)

Fundamenta Mathematicae

Let be an abelian category, or more generally a weakly idempotent complete exact category, and suppose we have two complete hereditary cotorsion pairs ( , ˜ ) and ( ˜ , ) in satisfying ˜ and ˜ = ˜ . We show how to construct a (necessarily unique) abelian model structure on with (resp. ˜ ) as the class of cofibrant (resp. trivially cofibrant) objects, and (resp. ˜ ) as the class of fibrant (resp. trivially fibrant) objects.

Idempotent completion of pretriangulated categories

Jichun Liu, Longgang Sun (2014)

Czechoslovak Mathematical Journal

A pretriangulated category is an additive category with left and right triangulations such that these two triangulations are compatible. In this paper, we first show that the idempotent completion of a left triangulated category admits a unique structure of left triangulated category and dually this is true for a right triangulated category. We then prove that the idempotent completion of a pretriangulated category has a natural structure of pretriangulated category. As an application, we show that...

Currently displaying 161 – 180 of 399