On basis of identities of Brandt semigroups.
The aim of this paper is to introduce the notion of BG-injectors of finite groups and invoke this notion to determine the B-injectors of Sₙ and Aₙ and to prove that they are conjugate. This paper provides a new, more straightforward and constructive proof of a result of Bialostocki which determines the B-injectors of the symmetric and alternating groups.
In this paper, the unproven half of Richard Brauer’s Height Zero Conjecture is reduced to a question on simple groups.
A -group is a sum of a finite number of torsionfree Abelian groups of rank , subject to two independent linear relations. We complete here the study of direct decompositions over two base elements, determining the cases where the relations play an essential role.
We study equivalences for category of the rational Cherednik algebras of type : a highest weight equivalence between and for and an action of on an explicit non-empty Zariski open set of parameters ; a derived equivalence between and whenever and have integral difference; a highest weight equivalence between and a parabolic category for the general linear group, under a non-rationality assumption on the parameter . As a consequence, we confirm special cases of conjectures...
We give necessary and sufficient conditions for various vertex-transitivity of Cayley graphs of the class of completely 0-simple semigroups and its several subclasses. Moreover, the question when the Cayley graphs of completely 0-simple semigroups are undirected is considered.
In this short paper, we survey the results on commutative automorphic loops and give a new construction method. Using this method, we present new classes of commutative automorphic loops of exponent with trivial center.