On central extensions of mapping class groups.
In this paper we consider finite loops whose inner mapping groups are nilpotent. We first consider the case where the inner mapping group of a loop is the direct product of a dihedral group of order and an abelian group. Our second result deals with the case where is a -loop and is a nilpotent group whose nonabelian Sylow subgroups satisfy a special condition. In both cases it turns out that is centrally nilpotent.
Using a lemma on subnormal subgroups, the problem of nilpotency of multiplication groups and inner permutation groups of centrally nilpotent loops is discussed.
The -fold product of an arbitrary space usually supports only the obvious permutation action of the symmetric group . However, if is a -complete, homotopy associative, homotopy commutative -space one can define a homotopy action of on . In various cases, e.g. if multiplication by is null homotopic then we get a homotopy action of for some . After one suspension this allows one to split using idempotents of which can be lifted to . In fact all of this is possible if is an -space...