Displaying 241 – 260 of 1463

Showing per page

On chirality groups and regular coverings of regular oriented hypermaps

Antonio Breda d'Azevedo, Ilda Inácio Rodrigues, Maria Elisa Fernandes (2011)

Czechoslovak Mathematical Journal

We prove that if the Walsh bipartite map = 𝒲 ( ) of a regular oriented hypermap is also orientably regular then both and have the same chirality group, the covering core of (the smallest regular map covering ) is the Walsh bipartite map of the covering core of and the closure cover of (the greatest regular map covered by ) is the Walsh bipartite map of the closure cover of . We apply these results to the family of toroidal chiral hypermaps ( 3 , 3 , 3 ) b , c = 𝒲 - 1 { 6 , 3 } b , c induced by the family of toroidal bipartite maps...

On classical invariant theory and binary cubics

Gerald W. Schwarz (1987)

Annales de l'institut Fourier

Let G be a reductive complex algebraic group, and let C [ m V ] G denote the algebra of invariant polynomial functions on the direct sum of m copies of the representations space V of G . There is a smallest integer n = n ( V ) such that generators and relations of C [ m V ] G can be obtained from those of C [ n V ] G by polarization and restitution for all m > n . We bound and the degrees of generators and relations of C [ n V ] G , extending results of Vust. We apply our techniques to compute the invariant theory of binary cubics.

Currently displaying 241 – 260 of 1463