Représentations modulaires de en caractéristique , corps -adique,
We present two different representations of (1,1)-knots and study some connections between them. The first representation is algebraic: every (1,1)-knot is represented by an element of the pure mapping class group of the twice punctured torus PMCG₂(T). Moreover, there is a surjective map from the kernel of the natural homomorphism Ω:PMCG₂(T) → MCG(T) ≅ SL(2,ℤ), which is a free group of rank two, to the class of all (1,1)-knots in a fixed lens space. The second representation is parametric: every...
In the group theory various representations of free groups are used. A representation of a free group of rank two by the so-calledtime-varying Mealy automata over the changing alphabet is given. Two different constructions of such automata are presented.
We give combinatorial models for non-spherical, generic, smooth, complex representations of the group , where is a non-Archimedean locally compact field. More precisely we carry on studying the graphs defined in a previous work. We show that such representations may be obtained as quotients of the cohomology of a graph , for a suitable integer , or equivalently as subspaces of the space of discrete harmonic cochains on such a graph. Moreover, for supercuspidal representations, these models...