Weights of partitions and character zeros.
We give a survey of techniques from quantum group theory which can be used to show that some quantum spaces (objects of the category dual to the category of C*-algebras) do not admit any quantum group structure. We also provide a number of examples which include some very well known quantum spaces. Our tools include several purely quantum group theoretical results as well as study of existence of characters and traces on C*-algebras describing the considered quantum spaces as well as properties...
We contrast the simple proof that a quasigroup which satisfies the Moufang identity is necessarily a loop (Moufang loop) with the remarkably involved prof that a quasigroup which satisfies the Moufang identity is likewise necessarily a Moufang loop and attempt to explain why the proofs are so different in complexity.
Cameron introduced the orbit algebra of a permutation group and conjectured that this algebra is an integral domain if and only if the group has no finite orbit. We prove that this conjecture holds and in fact that the age algebra of a relational structure R is an integral domain if and only if R is age-inexhaustible. We deduce these results from a combinatorial lemma asserting that if a product of two non-zero elements of a set algebra is zero then there is a finite common tranversal of their...
The intrinsic algebraic entropy ent(ɸ) of an endomorphism ɸ of an Abelian group G can be computed using fully inert subgroups of ɸ-invariant sections of G, instead of the whole family of ɸ-inert subgroups. For a class of groups containing the groups of finite rank, aswell as those groupswhich are trajectories of finitely generated subgroups, it is proved that only fully inert subgroups of the group itself are needed to comput ent(ɸ). Examples show how the situation may be quite different outside...
The question in the title, first raised by Goldman and Donaldson, was partially answered by Reznikov. We give a complete answer, as follows: if can be realized as both the fundamental group of a closed 3-manifold and of a compact Kähler manifold, then must be finite—and thus belongs to the well-known list of finite subgroups of , acting freely on .