A uniform chain whose inverse semigroup has no chart.
C.J. Ash (1979)
Semigroup forum
Dojnikov, P.V. (2004)
Sibirskij Matematicheskij Zhurnal
F. P. Greenleaf, M. Moskowitz, L. P. Rothschild (1980)
Colloquium Mathematicae
Gălugăreanu, Grigore (1999)
Theory and Applications of Categories [electronic only]
Mahdi Abedei, Ali Iranmanesh, Farrokh Shirjian (2020)
Czechoslovak Mathematical Journal
Let be a finite group and let denote the set of conjugacy class sizes of . Thompson’s conjecture states that if is a centerless group and is a non-abelian simple group satisfying , then . In this paper, we investigate a variation of this conjecture for some symmetric groups under a weaker assumption. In particular, it is shown that if and only if and has a special conjugacy class of size , where is a prime number. Consequently, if is a centerless group with , then .
Fedor Bogomolov, Jorge Maciel (2009)
Open Mathematics
In this article we prove an effective version of the classical Brauer’s Theorem for integer class functions on finite groups.
Guirardel, Vincent (2003)
Geometry & Topology
Michel Demazure (1976)
Inventiones mathematicae
Dubois, Jérôme (2006)
Algebraic & Geometric Topology
Michael G. Cowling, Stefano Meda, Alberto G. Setti (2010)
Colloquium Mathematicae
We give a simple proof of a result of R. Rochberg and M. H. Taibleson that various maximal operators on a homogeneous tree, including the Hardy-Littlewood and spherical maximal operators, are of weak type (1,1). This result extends to corresponding maximal operators on a transitive group of isometries of the tree, and in particular for (nonabelian finitely generated) free groups.
M. J. Iranzo, A. Martínez-Pastor, F. Pérez-Monasor (1992)
Rendiconti del Seminario Matematico della Università di Padova
Mendes, Anthony, Remmel, Jeffrey, Wagner, Jennifer (2004)
The Electronic Journal of Combinatorics [electronic only]
W. Kuyk, H.W. jr. Lenstra (1975)
Mathematische Annalen
Bernhard Amberg (1971)
Mathematische Zeitschrift
Martin Huber, Paul C. Eklof (1979)
Commentarii mathematici Helvetici
Paul Hill (2008)
Czechoslovak Mathematical Journal
Torsion-free covers are considered for objects in the category Objects in the category are just maps in -Mod. For we find necessary and sufficient conditions for the coGalois group associated to a torsion-free cover, to be trivial for an object in Our results generalize those of E. Enochs and J. Rado for abelian groups.
Simion Breaz, Grigore Călugăreanu (2002)
Commentationes Mathematicae Universitatis Carolinae
The notions of nearly-maximal and near Frattini subgroups considered by J.B. Riles in [20] and the natural related notions are characterized for abelian groups.
Bhutani, Kiran R. (1989)
International Journal of Mathematics and Mathematical Sciences
Jindřich Bečvář (1980)
Rendiconti del Seminario Matematico della Università di Padova
Jindřich Bečvář (1980)
Rendiconti del Seminario Matematico della Università di Padova