A useful category for mixed Abelian groups.
Let be a finite group and let denote the set of conjugacy class sizes of . Thompson’s conjecture states that if is a centerless group and is a non-abelian simple group satisfying , then . In this paper, we investigate a variation of this conjecture for some symmetric groups under a weaker assumption. In particular, it is shown that if and only if and has a special conjugacy class of size , where is a prime number. Consequently, if is a centerless group with , then .
In this article we prove an effective version of the classical Brauer’s Theorem for integer class functions on finite groups.
We give a simple proof of a result of R. Rochberg and M. H. Taibleson that various maximal operators on a homogeneous tree, including the Hardy-Littlewood and spherical maximal operators, are of weak type (1,1). This result extends to corresponding maximal operators on a transitive group of isometries of the tree, and in particular for (nonabelian finitely generated) free groups.
Torsion-free covers are considered for objects in the category Objects in the category are just maps in -Mod. For we find necessary and sufficient conditions for the coGalois group associated to a torsion-free cover, to be trivial for an object in Our results generalize those of E. Enochs and J. Rado for abelian groups.
The notions of nearly-maximal and near Frattini subgroups considered by J.B. Riles in [20] and the natural related notions are characterized for abelian groups.
The notion of adjoint entropy for endomorphisms of an Abelian group is somehow dual to that of algebraic entropy. The Abelian groups of zero adjoint entropy, i.e. ones whose endomorphisms all have zero adjoint entropy, are investigated. Torsion groups and cotorsion groups satisfying this condition are characterized. It is shown that many classes of torsionfree groups contain groups of either zero or infinite adjoint entropy. In particular, no characterization of torsionfree groups of zero adjoint...
In this article we characterize those abelian groups for which the coGalois group (associated to a torsion free cover) is equal to the identity.