Displaying 1341 – 1360 of 10175

Showing per page

Classification of finite groups with many minimal subgroups and with the number of conjugacy classes of G/S(G) equal to 8.

Antonio Vera López, Jesús María Arregi Lizarraga, Francisco José Vera López (1990)

Collectanea Mathematica

In this paper we classify all the finite groups satisfying r(G/S(G))=8 and ß(G)=r(G) - a(G) - 1, where r(G) is the number of conjugacy classes of G, ß(G) is the number of minimal normal subgroups of G, S(G) the socle of G and a(G) the number of conjugacy classes of G out of S(G). These results are a contribution to the general problem of the classification of the finite groups according to the number of conjugacy classes.

Classification of ideals of 8 -dimensional Radford Hopf algebra

Yu Wang (2022)

Czechoslovak Mathematical Journal

Let H m , n be the m n 2 -dimensional Radford Hopf algebra over an algebraically closed field of characteristic zero. We give the classification of all ideals of 8 -dimensional Radford Hopf algebra H 2 , 2 by generators.

Classification of quasigroups according to directions of translations I

Fedir Sokhatsky, Alla Lutsenko (2020)

Commentationes Mathematicae Universitatis Carolinae

It is proved that every translation in a quasigroup has two independent parameters. One of them is a bijection of the carrier set. The second parameter is called a direction here. Properties of directions in a quasigroup are considered in the first part of the work. In particular, totally symmetric, semisymmetric, commutative, left and right symmetric and also asymmetric quasigroups are characterized within these concepts. The sets of translations of the same direction are under consideration in...

Classification of quasigroups according to directions of translations II

Fedir Sokhatsky, Alla Lutsenko (2021)

Commentationes Mathematicae Universitatis Carolinae

In each quasigroup Q there are defined six types of translations: the left, right and middle translations and their inverses. Two translations may coincide as permutations of Q , and yet be different when considered upon the web of the quasigroup. We shall call each of the translation types a direction and will associate it with one of the elements ι , l , r , s , l s and r s , i.e., the elements of a symmetric group S 3 . Properties of the directions are considered in part 1 of “Classification of quasigroups according...

Currently displaying 1341 – 1360 of 10175