Medial and Distributively Generated Near-Rings.
We show that superreflexivity can be characterized in terms of bilipschitz embeddability of word hyperbolic groups.We compare characterizations of superrefiexivity in terms of diamond graphs and binary trees.We show that there exist sequences of series-parallel graphs of increasing topological complexitywhich admit uniformly bilipschitz embeddings into a Hilbert space, and thus do not characterize superrefiexivity.
We summarize here the main ideas and results of our papers [28], [14], as presented at the 2013 CIRM Meeting on Discrete curvature and we augment these by bringing up an application of one of our main results, namely to solving a problem regarding cube complexes.
In questo lavoro viene trovata un'espressione esplicita per i rappresentanti dei laterali di sottogrupi parabolici di gruppi di Coxeter aventi lunghezza minima: dato un sistema di Coxeter ed un suo sottogruppo parabolico , con , si determina esplicitamente in ogni laterale di un elemento avente lunghezza minima. Nella sezione 2 trattiamo i casi classici, i.e. , e . Dopo ciò, nella sezione 3, diamo una procedura per risolvere il problema nei restanti casi eccezionali, insieme a qualche...
In questo lavoro sono contenuti alcuni risultati riguardanti la struttura dei gruppi non-periodici in cui sottogruppi verificano opportune condizioni di modularità.
Let A be an R G-module, where R is an integral domain and G is a soluble group. Suppose that C G(A) = 1 and A/C A(G) is not a noetherian R-module. Let L nnd(G) be the family of all subgroups H of G such that A/C A(H) is not a noetherian R-module. In this paper we study the structure of those G for which L nnd(G) satisfies the maximal condition.
Let G be a split semisimple algebraic group over Q with trivial center. Let S be a compact oriented surface, with or without boundary. We define positive representations of the fundamental group of S to G(R), construct explicitly all positive representations, and prove that they are faithful, discrete, and positive hyperbolic; the moduli space of positive representations is a topologically trivial open domain in the space of all representations. When S have holes, we defined two moduli spaces closely...
We show that the class of groups which have monoid presentations by means of finite special -confluent string-rewriting systems strictly contains the class of plain groups (the groups which are free products of a finitely generated free group and finitely many finite groups), and that any group which has an infinite cyclic central subgroup can be presented by such a string-rewriting system if and only if it is the direct product of an infinite cyclic group and a finite cyclic group.
We show that the class of groups which have monoid presentations by means of finite special [λ]-confluent string-rewriting systems strictly contains the class of plain groups (the groups which are free products of a finitely generated free group and finitely many finite groups), and that any group which has an infinite cyclic central subgroup can be presented by such a string-rewriting system if and only if it is the direct product of an infinite cyclic group and a finite cyclic group.