Displaying 21 – 40 of 149

Showing per page

Singular Hecke algebras, Markov traces, and HOMFLY-type invariants

Luis Paris, Loïc Rabenda (2008)

Annales de l’institut Fourier

We define the singular Hecke algebra ( S B n ) as the quotient of the singular braid monoid algebra ( q ) [ S B n ] by the Hecke relations σ k 2 = ( q - 1 ) σ k + q , 1 k n - 1 . We define the notion of Markov trace in this context, fixing the number d of singular points, and we prove that a Markov trace determines an invariant on the links with d singular points which satisfies some skein relation. Let TR d denote the set of Markov traces with d singular points. This is a ( q , z ) -vector space. Our main result is that TR d is of dimension d + 1 . This result is completed...

Singularités génériques des variétés de Schubert covexillaires

Aurélie Cortez (2001)

Annales de l’institut Fourier

On montre que les composantes irréductibles du lieu singulier d’une variété de Schubert dans G L n / B , associée à une permutation covexillaire, sont paramétrées par certains des points coessentiels du graphe de la permutation. On donne une description explicite de ces composantes et l’on décrit la singularité le long de chacune d’entre elles.

Soluble Groups with Many Černikov Quotients

Silvana Franciosi, Francesco de Giovanni (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si studiano i gruppi risolubili non di Černikov a quozienti propri di Černikov. Nel caso periodico tali gruppi sono tutti e soli i prodotti semidiretti H N con N p -gruppo abeliano elementare infinito e H gruppo irriducibile di automorfismi di N che sia infinito e di Černikov. Nel caso non periodico invece si riconduce tale studio a quello dei moduli a quozienti...

Solvable groups with many BFC-subgroups.

O. D. Artemovych (2000)

Publicacions Matemàtiques

We characterize the solvable groups without infinite properly ascending chains of non-BFC subgroups and prove that a non-BFC group with a descending chain whose factors are finite or abelian is a Cernikov group or has an infinite properly descending chain of non-BFC subgroups.

Some Algebraic Properties of Machine Poset of Infinite Words

Aleksandrs Belovs (2008)

RAIRO - Theoretical Informatics and Applications

The complexity of infinite words is considered from the point of view of a transformation with a Mealy machine that is the simplest model of a finite automaton transducer. We are mostly interested in algebraic properties of the underlying partially ordered set. Results considered with the existence of supremum, infimum, antichains, chains and density aspects are investigated.

Currently displaying 21 – 40 of 149