Simplicial approximation and low-rank trees.
We define the singular Hecke algebra as the quotient of the singular braid monoid algebra by the Hecke relations , . We define the notion of Markov trace in this context, fixing the number of singular points, and we prove that a Markov trace determines an invariant on the links with singular points which satisfies some skein relation. Let denote the set of Markov traces with singular points. This is a -vector space. Our main result is that is of dimension . This result is completed...
On montre que les composantes irréductibles du lieu singulier d’une variété de Schubert dans associée à une permutation covexillaire, sont paramétrées par certains des points coessentiels du graphe de la permutation. On donne une description explicite de ces composantes et l’on décrit la singularité le long de chacune d’entre elles.
Si studiano i gruppi risolubili non di Černikov a quozienti propri di Černikov. Nel caso periodico tali gruppi sono tutti e soli i prodotti semidiretti con -gruppo abeliano elementare infinito e gruppo irriducibile di automorfismi di che sia infinito e di Černikov. Nel caso non periodico invece si riconduce tale studio a quello dei moduli a quozienti...
We characterize the solvable groups without infinite properly ascending chains of non-BFC subgroups and prove that a non-BFC group with a descending chain whose factors are finite or abelian is a Cernikov group or has an infinite properly descending chain of non-BFC subgroups.
The complexity of infinite words is considered from the point of view of a transformation with a Mealy machine that is the simplest model of a finite automaton transducer. We are mostly interested in algebraic properties of the underlying partially ordered set. Results considered with the existence of supremum, infimum, antichains, chains and density aspects are investigated.