Displaying 541 – 560 of 2186

Showing per page

General construction of non-dense disjoint iteration groups on the circle

Krzysztof Ciepliński (2005)

Czechoslovak Mathematical Journal

Let = { F v 𝕊 1 𝕊 1 , v V } be a disjoint iteration group on the unit circle 𝕊 1 , that is a family of homeomorphisms such that F v 1 F v 2 = F v 1 + v 2 for v 1 , v 2 V and each F v either is the identity mapping or has no fixed point ( ( V , + ) is a 2 -divisible nontrivial Abelian group). Denote by L the set of all cluster points of { F v ( z ) , v V } for z 𝕊 1 . In this paper we give a general construction of disjoint iteration groups for which L 𝕊 1 .

Generalized descent algebra and construction of irreducible characters of hyperoctahedral groups

Cédric Bonnafé, Christophe Hohlweg (2006)

Annales de l’institut Fourier

We construct a subalgebra Σ ( W n ) of dimension 2 · 3 n - 1 of the group algebra of the Weyl group W n of type B n containing its usual Solomon algebra and the one of 𝔖 n : Σ ( W n ) is nothing but the Mantaci-Reutenauer algebra but our point of view leads us to a construction of a surjective morphism of algebras Σ ( W n ) Z Irr ( W n ) . Jöllenbeck’s construction of irreducible characters of the symmetric group by using the coplactic equivalence classes can then be transposed to W n . In an appendix, P. Baumann and C. Hohlweg present in an explicit and...

Generalized Induction of Kazhdan-Lusztig cells

Jérémie Guilhot (2009)

Annales de l’institut Fourier

Following Lusztig, we consider a Coxeter group W together with a weight function. Geck showed that the Kazhdan-Lusztig cells of W are compatible with parabolic subgroups. In this paper, we generalize this argument to some subsets of W which may not be parabolic subgroups. We obtain two applications: we show that under specific technical conditions on the parameters, the cells of certain parabolic subgroups of W are cells in the whole group, and we decompose the affine Weyl group of type G into left...

Generation of finite groups by nilpotent subgroups

E. Damian (2003)

Bollettino dell'Unione Matematica Italiana

We study the generation of finite groups by nilpotent subgroups and in particular we investigate the structure of groups which cannot be generated by n nilpotent subgroups and such that every proper quotient can be generated by n nilpotent subgroups. We obtain some results about the structure of these groups and a lower bound for their orders.

Currently displaying 541 – 560 of 2186