Groups with subnormal subgroups of bounded defect
Let be a group with the property that there are no infinite descending chains of non-subnormal subgroups of for which all successive indices are infinite. The main result is that if is a locally (soluble-by-finite) group with this property then either has all subgroups subnormal or is a soluble-by-finite minimax group. This result fills a gap left in an earlier paper by the same authors on groups with the stated property.
Hass, Rubinstein, and Scott showed that every closed aspherical (irreducible) 3-manifold whose fundamental group contains the fundamental group of a closed aspherical surface, is covered by Euclidean space. This theorem does not generalize to higher dimensions. However, we provide geometric tools with which variations of this theorem can be proved in all dimensions.
We present a simple constructive proof of the fact that every abelian discrete group is uniformly amenable. We improve the growth function obtained earlier and find the optimal growth function in a particular case. We also compute a growth function for some non-abelian uniformly amenable group.
M. V. Sapir ha formulato la seguente congettura: non esiste un semigruppo infinito, finitamente generabile, soddisfacente l'identità e immagine omomorfa di un sottosemigruppo di un gruppo nilpotente. Se ciò vale, ogni gruppo risolubile con una base finita per le sue identità semigruppali è abeliano o di esponente finito. In questo lavoro si prova la congettura di Sapir quando l'interderivato è periodico o se è -generato e è periodico.