Displaying 81 – 100 of 204

Showing per page

A short proof of a theorem of Brodskii.

James Howie (2000)

Publicacions Matemàtiques

A short proof, using graphs and groupoids, is given of Brodskii’s theorem that torsion-free one-relator groups are locally indicable.

A topological view of ordered groups

Dale Rolfsen (2014)

Banach Center Publications

In this expository article we use topological ideas, notably compactness, to establish certain basic properties of orderable groups. Many of the properties we shall discuss are well-known, but I believe some of the proofs are new. These will be used, in turn, to prove some orderability results, including the left-orderability of the group of PL homeomorphisms of a surface with boundary, which are fixed on at least one boundary component.

Abelian ideals of a Borel subalgebra and root systems

Dmitri I. Panyushev (2014)

Journal of the European Mathematical Society

Let 𝔤 be a simple Lie algebra and 𝔄𝔟 o the poset of non-trivial abelian ideals of a fixed Borel subalgebra of 𝔤 . In [8], we constructed a partition 𝔄𝔟 o = μ 𝔄𝔟 μ parameterised by the long positive roots of 𝔤 and studied the subposets 𝔄𝔟 μ . In this note, we show that this partition is compatible with intersections, relate it to the Kostant-Peterson parameterisation and to the centralisers of abelian ideals. We also prove that the poset of positive roots of 𝔤 is a join-semilattice.

Abelian quasinormal subgroups of groups

Stewart E. Stonehewer, Giovanni Zacher (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let G be any group and let A be an abelian quasinormal subgroup of G . If n is any positive integer, either odd or divisible by 4 , then we prove that the subgroup A n is also quasinormal in G .

Currently displaying 81 – 100 of 204