Abelian subgroups of the Torelli group.
In the paper we give a survey of rather new notions and results which generalize classical ones in the theory of braids. Among such notions are various inverse monoids of partial braids. We also observe presentations different from standard Artin presentation for generalizations of braids. Namely, we consider presentations with small number of generators, Sergiescu graph-presentations and Birman-Ko-Lee presentation. The work of V.~V.~Chaynikov on the word and conjugacy problems for the singular...
We study actions of finitely generated groups on -trees under some stability hypotheses. We prove that either the group splits over some controlled subgroup (fixing an arc in particular), or the action can be obtained by gluing together actions of simple types: actions on simplicial trees, actions on lines, and actions coming from measured foliations on -orbifolds. This extends results by Sela and Rips-Sela. However, their results are misstated, and we give a counterexample to their statements.The...
Given a generating family F of subgroups of a group G closed under conjugation and with partial order compatible with inclusion, a new group S can be constructed, taking into account the multiplication in the subgroups and their mutual actions given by conjugation. The group S is called the active sum of F, has G as a homomorph and is such that S/Z(S) ≅ G/Z(G) where Z denotes the center.The basic question we investigate in this paper is: when is the active sum S of the family F isomorphic to the...
In this paper we construct and study an action of the affine braid group associated with a semi-simple algebraic group on derived categories of coherent sheaves on various varieties related to the Springer resolution of the nilpotent cone. In particular, we describe explicitly the action of the Artin braid group. This action is a “categorical version” of Kazhdan-Lusztig-Ginzburg’s construction of the affine Hecke algebra, and is used in particular by the first author and I. Mirković in the course...