Anwendungen der Nielsenschen Kürzungsmethode in Gruppen mit einer definierenden Relation.
This is a survey of some consequences of the fact that the fundamental group of the orbifold with singular set the Borromean link and isotropy cyclic of order 4 is a universal kleinian group.
Using the notion of relative presentation due to Bogley and Pride, we give a new proof of a theorem of Prishchepov on the asphericity of certain symmetric presentations of groups. Then we obtain further results and applications to topology of low-dimensional manifolds.
We extend Gromov's notion of asymptotic dimension of finitely generated groups to all discrete groups. In particular, we extend the Hurewicz type theorem proven in [B-D2] to general groups. Then we use this extension to prove a formula for the asymptotic dimension of finitely generated solvable groups in terms of their Hirsch length.
We show that one relator groups viewed as metric spaces with respect to the word-length metric have finite asymptotic dimension in the sense of Gromov, and we give an improved estimate of that dimension in terms of the relator length. The construction is similar to one of Bell and Dranishnikov, but we produce a sharper estimate.
Le cadre de cet article est celui des groupes et des espaces hyperboliques de M. Gromov. Il est motivé par la question suivante : comment différencier deux groupes hyperboliques à quasi-isométrie près ? On illustre ce problème en détaillant un exemple de M. Gromov issu de Asymptotic invariants for infinite groups. On décrit une famille infinie de groupes hyperboliques, deux à deux non quasi-isométriques, de bord la courbe de Menger. La méthode consiste à étudier leur structure quasi-conforme au...