Displaying 461 – 480 of 1248

Showing per page

Linear actions of free groups

Mark Pollicott, Richard Sharp (2001)

Annales de l’institut Fourier

In this paper we study dynamical properties of linear actions by free groups via the induced action on projective space. This point of view allows us to introduce techniques from Thermodynamic Formalism. In particular, we obtain estimates on the growth of orbits and their limiting distribution on projective space.

Linear free divisors and the global logarithmic comparison theorem

Michel Granger, David Mond, Alicia Nieto-Reyes, Mathias Schulze (2009)

Annales de l’institut Fourier

A complex hypersurface D in n is a linear free divisor (LFD) if its module of logarithmic vector fields has a global basis of linear vector fields. We classify all LFDs for n at most 4 .By analogy with Grothendieck’s comparison theorem, we say that the global logarithmic comparison theorem (GLCT) holds for D if the complex of global logarithmic differential forms computes the complex cohomology of n D . We develop a general criterion for the GLCT for LFDs and prove that it is fulfilled whenever the...

Linear maps preserving orbits

Gerald W. Schwarz (2012)

Annales de l’institut Fourier

Let H GL ( V ) be a connected complex reductive group where V is a finite-dimensional complex vector space. Let v V and let G = { g GL ( V ) g H v = H v } . Following Raïs we say that the orbit H v is characteristic for H if the identity component of G is H . If H is semisimple, we say that H v is semi-characteristic for H if the identity component of G is an extension of H by a torus. We classify the H -orbits which are not (semi)-characteristic in many cases.

Local-global principle for congruence subgroups of Chevalley groups

Himanee Apte, Alexei Stepanov (2014)

Open Mathematics

Suslin’s local-global principle asserts that if a matrix over a polynomial ring vanishes modulo the independent variable and is locally elementary then it is elementary. In this article we prove Suslin’s local-global principle for principal congruence subgroups of Chevalley groups. This result is a common generalization of the result of Abe for the absolute case and Apte, Chattopadhyay and Rao for classical groups. For the absolute case the localglobal principle was recently obtained by Petrov and...

Manin’s and Peyre’s conjectures on rational points and adelic mixing

Alex Gorodnik, François Maucourant, Hee Oh (2008)

Annales scientifiques de l'École Normale Supérieure

Let X be the wonderful compactification of a connected adjoint semisimple group G defined over a number field K . We prove Manin’s conjecture on the asymptotic (as T ) of the number of K -rational points of X of height less than T , and give an explicit construction of a measure on X ( 𝔸 ) , generalizing Peyre’s measure, which describes the asymptotic distribution of the rational points 𝐆 ( K ) on X ( 𝔸 ) . Our approach is based on the mixing property of L 2 ( 𝐆 ( K ) 𝐆 ( 𝔸 ) ) which we obtain with a rate of convergence.

Metaplectic covers of G L n and the Gauss-Schering lemma

Richard Hill (2001)

Journal de théorie des nombres de Bordeaux

The Gauss-Schering Lemma is a classical formula for the Legendre symbol commonly used in elementary proofs of the quadratic reciprocity law. In this paper we show how the Gauss Schering Lemma may be generalized to give a formula for a 2 -cocycle corresponding to a higher metaplectic extension of GL n / k for any global field k . In the case that k has positive characteristic, our formula gives a complete construction of the metaplectic group and consequently an independent proof of the power reciprocity...

Currently displaying 461 – 480 of 1248