Principal Orbit Types for Algebraic Transformation Spaces in Characteristic Zero.
We first note that a result of Gowers on product-free sets in groups has an unexpected consequence: If is the minimal degree of a representation of the finite group , then for every subset of with we have . We use this to obtain improved versions of recent deep theorems of Helfgott and of Shalev concerning product decompositions of finite simple groups, with much simpler proofs. On the other hand, we prove a version of Jordan’s theorem which implies that if , then has a proper subgroup...
For the groups , , , over a finite field we solve the class product problem, i.e., we give a complete list of -tuples of conjugacy classes whose product does not contain the identity matrix.
Chevalley’s theorem states that every smooth connected algebraic group over a perfect field is an extension of an abelian variety by a smooth connected affine group. That fails when the base field is not perfect. We define a pseudo-abelian variety over an arbitrary field to be a smooth connected -group in which every smooth connected affine normal -subgroup is trivial. This gives a new point of view on the classification of algebraic groups: every smooth connected group over a field is an extension...
Let be a field of characteristic . Let be a over (i.e., an -truncated Barsotti–Tate group over ). Let be a -scheme and let be a over . Let be the subscheme of which describes the locus where is locally for the fppf topology isomorphic to . If , we show that is pure in , i.e. the immersion is affine. For , we prove purity if satisfies a certain technical property depending only on its -torsion . For , we apply the developed techniques to show that all level ...
We provide a novel construction of quantized universal enveloping -algebras of real semisimple Lie algebras, based on Letzter’s theory of quantum symmetric pairs. We show that these structures can be ‘integrated’, leading to a quantization of the group C-algebra of an arbitrary semisimple algebraic real Lie group.
We describe how the constructions of quantum homogeneous spaces using infinitesimal invariance and quantum coisotropic subgroups are related. As an example we recover the quantum 4-sphere of [2] through infinitesimal invariance with respect to .
We review the formulation and proof of the Baum-Connes conjecture for the dual of the quantum group of Woronowicz. As an illustration of this result we determine the K-groups of quantum automorphism groups of simple matrix algebras.