Schrödinger equation on the Heisenberg group
Let be the Heisenberg group of dimension . Let be the partial sub-Laplacians on and the central element of the Lie algebra of . We prove that the kernel of the operator is in the Schwartz space if . We prove also that the kernel of the operator is in if and that the kernel of the operator is in if . Here is the Kohn-Laplacian on .
Using the exact representation of Carnot-Carathéodory balls in the Heisenberg group, we prove that: 1. in the classical sense for all with , where is the distance from the origin; 2. Metric balls are not optimal isoperimetric sets in the Heisenberg group.
We obtain some matrix elements of basis transformations in a representation space of the unimodular pseudo-orthogonal group. Using these elements, we derive some formulas for special functions.
On étudie diverses convergences des sommes de Riesz des fonctions de puissance pième sommable sur un groupe de Lie compact. On montre que , où est la dimension du groupe, est un indice critique pour la classe . On donne également un théorème de multiplicateurs qui redonne le résultat classique de Marcinkiewicz pour le tore. On établit enfin un lien entre les multiplicateurs des groupes de Lie compacts et certains multiplicateurs de .
Let K be a closed Lie subgroup of the unitary group U(n) acting by automorphisms on the (2n+1)-dimensional Heisenberg group . We say that is a Gelfand pair when the set of integrable K-invariant functions on is an abelian convolution algebra. In this case, the Gelfand space (or spectrum) for can be identified with the set of bounded K-spherical functions on . In this paper, we study the natural topology on given by uniform convergence on compact subsets in . We show that is a complete...
We study spectral multipliers for a distinguished Laplacian on certain groups of exponential growth. We obtain a stronger optimal version of the results proved in [CGHM] and [A].
Let G be a Lie group, Xj right invariant vector fields on G, which generate (as a Lie algebra) the Lie algebra of G,L = -Σ Xj2.(...) In this paper we consider L1(G) boundedness of F(L) for (some) metabelian G and a distinguished L on G. Of the main interest is that the group is of exponential growth, and possibly higher rank. Previously positive results about higher rank groups were only about Iwasawa type groups. Also, our groups may be unimodular, so it is the second positive result (after [13])...
For locally compact, second countable, type I groups G, we characterize all closed (two-sided) translation invariant subspaces of L²(G). We establish a similar result for K-biinvariant L²-functions (K a fixed maximal compact subgroup) in the context of semisimple Lie groups.