Non linear representations of Lie groups
In this article we study non-abelian extensions of a Lie group modeled on a locally convex space by a Lie group . The equivalence classes of such extension are grouped into those corresponding to a class of so-called smooth outer actions of on . If is given, we show that the corresponding set of extension classes is a principal homogeneous space of the locally smooth cohomology group . To each a locally smooth obstruction class in a suitably defined cohomology group is defined....
We obtain upper and lower estimates for the Green function for a second order noncoercive differential operator on a homogeneous manifold of negative curvature.
Let G be a real connected Lie group with polynomial volume growth endowed with its Haar measuredx. Given a C² positive bounded integrable function M on G, we give a sufficient condition for an L² Poincaré inequality with respect to the measure M(x)dx to hold on G. We then establish a nonlocal Poincaré inequality on G with respect to M(x)dx. We also give analogous Poincaré inequalities on Riemannian manifolds and deal with the case of Hardy inequalities.