Values of isotropic quadratic forms at -integral points
Le but de cet article est d’exposer de nouveaux exemples de structures anti-de Sitter sur des fibrés en cercles au-dessus d’une surface hyperbolique qui ne sont pas, modulo revêtement et quotient finis, des déformations de structures homogènes.
Soit le groupe des points sur d’un groupe réductif linéaire défini sur , un corps local non archimédien de caractéristique . Soit une involution rationnelle de ce groupe algébrique définie sur et soit le groupe des points sur d’un sous-groupe ouvert, défini sur , du groupe des points fixes de . Nous construisons des familles de vecteurs -invariants dans le dual de séries principales généralisées, en utilisant l’homologie des groupes. Des résultats de A.G.Helminck, S.P.Wang et A.G.Helminck,...
Nous présentons une méthode permettant d’établir le théorème limite central avec vitesse en pour certains systèmes dynamiques. Elle est basée sur une propriété de décorrélation forte qui semble assez naturelle dans le cadre des systèmes quasi-hyperboliques. Nous prouvons que cette propriété est satisfaite par les exemples des flots diagonaux sur un quotient compact de et les « transformations » non uniformément hyperboliques du tore étudiées par Shub et Wilkinson.