Displaying 21 – 40 of 247

Showing per page

An extension of a theorem of Marcinkiewicz and Zygmund on differentiability

S. Mukhopadhyay, S. Mitra (1996)

Fundamenta Mathematicae

Let f be a measurable function such that Δ k ( x , h ; f ) = O ( | h | λ ) at each point x of a set E, where k is a positive integer, λ > 0 and Δ k ( x , h ; f ) is the symmetric difference of f at x of order k. Marcinkiewicz and Zygmund [5] proved that if λ = k and if E is measurable then the Peano derivative f ( k ) exists a.e. on E. Here we prove that if λ > k-1 then the Peano derivative f ( [ λ ] ) exists a.e. on E and that the result is false if λ = k-1; it is further proved that if λ is any positive integer and if the approximate Peano derivative...

An inconsistency equation involving means

Roman Ger, Tomasz Kochanek (2009)

Colloquium Mathematicae

We show that any quasi-arithmetic mean A φ and any non-quasi-arithmetic mean M (reasonably regular) are inconsistent in the sense that the only solutions f of both equations f ( M ( x , y ) ) = A φ ( f ( x ) , f ( y ) ) and f ( A φ ( x , y ) ) = M ( f ( x ) , f ( y ) ) are the constant ones.

Approximate and L p Peano derivatives of nonintegral order

J. Marshall Ash, Hajrudin Fejzić (2005)

Studia Mathematica

Let n be a nonnegative integer and let u ∈ (n,n+1]. We say that f is u-times Peano bounded in the approximate (resp. L p , 1 ≤ p ≤ ∞) sense at x m if there are numbers f α ( x ) , |α| ≤ n, such that f ( x + h ) - | α | n f α ( x ) h α / α ! is O ( h u ) in the approximate (resp. L p ) sense as h → 0. Suppose f is u-times Peano bounded in either the approximate or L p sense at each point of a bounded measurable set E. Then for every ε > 0 there is a perfect set Π ⊂ E and a smooth function g such that the Lebesgue measure of E∖Π is less than ε and f = g on Π....

Automatic differentiation and its program realization

Jan Hartman, Ladislav Lukšan, Jan Zítko (2009)

Kybernetika

Automatic differentiation is an effective method for evaluating derivatives of function, which is defined by a formula or a program. Program for evaluating of value of function is by automatic differentiation modified to program, which also evaluates values of derivatives. Computed values are exact up to computer precision and their evaluation is very quick. In this article, we describe a program realization of automatic differentiation. This implementation is prepared in the system UFO, but its...

Bernstein’s analyticity theorem for quantum differences

Tord Sjödin (2007)

Czechoslovak Mathematical Journal

We consider real valued functions f defined on a subinterval I of the positive real axis and prove that if all of f ’s quantum differences are nonnegative then f has a power series representation on I . Further, if the quantum differences have fixed sign on I then f is analytic on I .

Cauchy's residue theorem for a class of real valued functions

Branko Sarić (2010)

Czechoslovak Mathematical Journal

Let [ a , b ] be an interval in and let F be a real valued function defined at the endpoints of [ a , b ] and with a certain number of discontinuities within [ a , b ] . Assuming F to be differentiable on a set [ a , b ] E to the derivative f , where E is a subset of [ a , b ] at whose points F can take values ± or not be defined at all, we adopt the convention that F and f are equal to 0 at all points of E and show that 𝒦ℋ -vt a b f = F ( b ) - F ( a ) , where 𝒦ℋ -vt denotes the total value of the Kurzweil-Henstock integral. The paper ends with a few examples that illustrate...

Currently displaying 21 – 40 of 247