On the symmetry of Dini derivates of arbitrary functions
The -finiteness of a variational measure, generated by a real valued function, is proved whenever it is -finite on all Borel sets that are negligible with respect to a -finite variational measure generated by a continuous function.
We investigate the topological structure of the space 𝓓ℬ₁ of bounded Darboux Baire 1 functions on [0,1] with the metric of uniform convergence and with the p*-topology. We also investigate some properties of the set Δ of bounded derivatives.
A simple arc ϕ is said to be a Whitney arc if there exists a non-constant function f such that for every . G. Petruska raised the question whether there exists a simple arc ϕ for which every subarc is a Whitney arc, but for which there is no parametrization satisfying . We answer this question partially, and study the structural properties of possible monotone, strictly monotone and VBG* functions f and associated Whitney arcs.
A. M. Bruckner, R. J. O'Malley, and B. S. Thomson introduced path differentiation as a vehicle for unifying the theory of numerous types of generalized differentiation of real valued functions of a real variable. Part of their classification scheme was based on intersection properties of the underlying path systems. Here, additional light is shed on the relationships between these various types of path differentiation and it is shown how composite differentiation and first return differentiation...
Nous précisons la classe de différentiabilité de où désigne une fonction positive de classe , -plate sur l’ensemble de ses zéros, et un réel, ; de plus, nous étudions l’existence locale d’une racine -ième de classe , pour une fonction de classe admettant une racine -ième formelle en chaque point.