Displaying 21 – 40 of 51

Showing per page

Linear distortion of Hausdorff dimension and Cantor's function.

Oleksiy Dovgoshey, Vladimir Ryazanov, Olli Martio, Matti Vuorinen (2006)

Collectanea Mathematica

Let be a mapping from a metric space X to a metric space Y, and let α be a positive real number. Write dim (E) and Hs(E) for the Hausdorff dimension and the s-dimensional Hausdorff measure of a set E. We give sufficient conditions that the equality dim (f(E)) = αdim (E) holds for each E ⊆ X. The problem is studied also for the Cantor ternary function G. It is shown that there is a subset M of the Cantor ternary set such that Hs(M) = 1, with s = log2/log3 and dim(G(E)) = (log3/log2) dim (E), for...

Linear Fractional PDE, Uniqueness of Global Solutions

Schäfer, Ingo, Kempfle, Siegmar, Nolte, Bodo (2005)

Fractional Calculus and Applied Analysis

Mathematics Subject Classification: 26A33, 47A60, 30C15.In this paper we treat the question of existence and uniqueness of solutions of linear fractional partial differential equations. Along examples we show that, due to the global definition of fractional derivatives, uniqueness is only sure in case of global initial conditions.

Linear Stieltjes integral equations in Banach spaces

Štefan Schwabik (1999)

Mathematica Bohemica

Fundamental results concerning Stieltjes integrals for functions with values in Banach spaces have been presented in [5]. The background of the theory is the Kurzweil approach to integration, based on Riemann type integral sums (see e.g. [3]). It is known that the Kurzweil theory leads to the (non-absolutely convergent) Perron-Stieltjes integral in the finite dimensional case. Here basic results concerning equations of the form x(t) = x(a) +at [A(s)]x(s) +f(t) - f(a) are presented on the basis of...

Linear Volterra-Stieltjes integral equations in the sense of the Kurzweil-Henstock integral

Márcia Federson, Ricardo Bianconi (2001)

Archivum Mathematicum

In 1990, Hönig proved that the linear Volterra integral equation x t - ( K ) a , t α t , s x s d s = f t , t a , b , where the functions are Banach space-valued and f is a Kurzweil integrable function defined on a compact interval a , b of the real line , admits one and only one solution in the space of the Kurzweil integrable functions with resolvent given by the Neumann series. In the present paper, we extend Hönig’s result to the linear Volterra-Stieltjes integral equation x t - ( K ) a , t α t , s x s d g s = f t , t a , b , in a real-valued context.

Lipschitz extensions of convex-valued maps

Alberto Bressan, Agostino Cortesi (1986)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si dimostra che ogni funzione multivoca lipschitziana con costante di Lipschitz M , definita su un sottoinsieme di uno spazio di Hilbert H a valori compatti e convessi in n , può essere estesa su tutto H ad una funzione multivoca lipschitziana con costante minore di 7 nM. In generale, non esistono invece estensioni aventi la stessa costante di Lipschitz M .

Currently displaying 21 – 40 of 51