Displaying 1541 – 1560 of 2163

Showing per page

Question d'examen

A. Allaretti (1875)

Nouvelles annales de mathématiques : journal des candidats aux écoles polytechnique et normale

Questions

H. Laurent (1875)

Nouvelles annales de mathématiques : journal des candidats aux écoles polytechnique et normale

Quotients of peripherally continuous functions

Jolanta Kosman (2011)

Open Mathematics

We characterize the family of quotients of peripherally continuous functions. Moreover, we study cardinal invariants related to quotients in the case of peripherally continuous functions and the complement of this family.

Racines de fonctions différentiables

Pierre Lengyel (1975)

Annales de l'institut Fourier

Nous précisons la classe de différentiabilité de f α f désigne une fonction positive de classe C p , p -plate sur l’ensemble de ses zéros, et α un réel, 0 < α < 1  ; de plus, nous étudions l’existence locale d’une racine p -ième de classe C , pour une fonction de classe C admettant une racine p -ième formelle en chaque point.

Ramsey, Lebesgue, and Marczewski sets and the Baire property

Patrick Reardon (1996)

Fundamenta Mathematicae

We investigate the completely Ramsey, Lebesgue, and Marczewski σ-algebras and their relations to the Baire property in the Ellentuck and density topologies. Two theorems concerning the Marczewski σ-algebra (s) are presented.  THEOREM. In the density topology D, (s) coincides with the σ-algebra of Lebesgue measurable sets.  THEOREM. In the Ellentuck topology on [ ω ] ω , ( s ) 0 is a proper subset of the hereditary ideal associated with (s).  We construct an example in the Ellentuck topology of a set which is...

Ranks for baire multifunctions

Pandelis Dodos (2003)

Colloquium Mathematicae

Various ordinal ranks for Baire-1 real-valued functions, which have been used in the literature, are adapted to provide ranks for Baire-1 multifunctions. A new rank is also introduced which, roughly speaking, gives an estimate of how far a Baire-1 multifunction is from being upper semicontinuous.

Regular fractional iteration of convex functions

Marek Kuczma (1980)

Annales Polonici Mathematici

The existence of a unique C 1 solution φ of equation (1) is proved under the condition that f: I → I is convex or concave and of class C 1 in I, 0 < f(x) < x in I*, and f’(x) > 0 in I. Here I = [0, a] or [0, a), 0 < a ≤ ∞, and I* = I 0.

Currently displaying 1541 – 1560 of 2163