Fine structure of prime-ends.
Since 1970’s B. Fuglede and others have been studying finely holomorhic functions, i.e., ‘holomorphic’ functions defined on the so-called fine domains which are not necessarily open in the usual sense. This note is a survey of finely monogenic functions which were introduced in (Lávička, R., A generalisation of monogenic functions to fine domains, preprint.) like a higher dimensional analogue of finely holomorphic functions.
In this paper, we investigate the growth of solutions of a certain class of linear differential equation where the coefficients are analytic functions in the closed complex plane except at a finite singular point. For that, we will use the value distribution theory of meromorphic functions developed by Rolf Nevanlinna with adapted definitions.
In this paper, we estimate the Douglas-Dirichlet functionals of harmonic mappings, namely Euclidean harmonic mapping and flat harmonic mapping, by using the extremal dilatation of finite distortion functions with given boundary value on the unit circle. In addition, -Dirichlet functionals of harmonic mappings are also investigated.
This paper deals with the finiteness problem of meromorphic funtions on an annulus sharing four values regardless of multiplicity. We prove that if three admissible meromorphic functions , , on an annulus share four distinct values regardless of multiplicity and have the complete identity set of positive counting function, then or or . This result deduces that there are at most two admissible meromorphic functions on an annulus sharing a value with multiplicity truncated to level and...
Euclidean Clifford analysis is a higher dimensional function theory studying so–called monogenic functions, i.e. null solutions of the rotation invariant, vector valued, first order Dirac operator . In the more recent branch Hermitean Clifford analysis, this rotational invariance has been broken by introducing a complex structure on Euclidean space and a corresponding second Dirac operator , leading to the system of equations expressing so-called Hermitean monogenicity. The invariance of this...