Estimates for asymptotically conformal mappings.
Dyn'kin, Evsey (1997)
Annales Academiae Scientiarum Fennicae. Mathematica
Anthony G. O'Farrell (1979)
Journal für die reine und angewandte Mathematik
Kayumov, I.R., Obnosov, Yu.V. (2005)
Sibirskij Matematicheskij Zhurnal
Stephan Ruscheweyh, Magdalena Wołoszkiewicz (2011)
Annales UMCS, Mathematica
Let || · || be the uniform norm in the unit disk. We study the quantities Mn (α) := inf (||zP(z) + α|| - α) where the infimum is taken over all polynomials P of degree n - 1 with ||P(z)|| = 1 and α > 0. In a recent paper by Fournier, Letac and Ruscheweyh (Math. Nachrichten 283 (2010), 193-199) it was shown that infα>0Mn (α) = 1/n. We find the exact values of Mn (α) and determine corresponding extremal polynomials. The method applied uses known cases of maximal ranges of polynomials.
Vo Dang Thao (1999)
Zeitschrift für Analysis und ihre Anwendungen
Romanova, S.V. (2003)
Sibirskij Matematicheskij Zhurnal
Olli Martio, V. Miklyukov, M. Vuorinen (2001)
Czechoslovak Mathematical Journal
The rate of growth of the energy integral of a quasiregular mapping is estimated in terms of a special isoperimetric condition on . The estimate leads to new Phragmén-Lindelöf type theorems.
Imed Feki (2013)
Czechoslovak Mathematical Journal
The main purpose of this work is to establish some logarithmic estimates of optimal type in the Hardy-Sobolev space ; of an annular domain. These results are considered as a continuation of a previous study in the setting of the unit disk by L. Baratchart and M. Zerner, On the recovery of functions from pointwise boundary values in a Hardy-Sobolev class of the disk, J. Comput. Appl. Math. 46 (1993), 255–269 and by S. Chaabane and I. Feki, Optimal logarithmic estimates in Hardy-Sobolev spaces...
Kazimierz Włodarczyk (1983)
Annales Polonici Mathematici
Zemyan, Stephen M. (1993)
International Journal of Mathematics and Mathematical Sciences
Kutsenko, A.A. (2004)
Zapiski Nauchnykh Seminarov POMI
M. Obradović (1984)
Matematički Vesnik
Jean Duchon, R. Robert (1986)
Annales de l'institut Fourier
On établit des estimations de l’intégrale singulière de Cauchy et des opérateurs du potentiel dans des échelles d’Ovjannikov de fonctions analytiques. Ces estimations sont utilisées pour obtenir des résultats d’existence locale en temps de solutions analytiques pour certains problèmes à frontière libre dans le plan.
Mohamed Amine Ben Boubaker, Mohamed Selmi (2013)
Colloquium Mathematicae
We establish inequalities for Green functions on general bounded piecewise Dini-smooth Jordan domains in ℝ². This enables us to prove a new version of the 3G Theorem which generalizes its previous version given in [M. Selmi, Potential Anal. 13 (2000)]. Using these results, we give a comparison theorem for the Green kernel of Δ and the Green kernel of Δ - μ, where μ is a nonnegative and exact Radon measure.
Petr Klán (1985)
Kybernetika
Belaïdi, Benharrat (2002)
Electronic Journal of Qualitative Theory of Differential Equations [electronic only]
A. Zielińska, K. Zyskowska (1983)
Annales Polonici Mathematici
Gajsin, A.M., Belous, T.I. (2003)
Sibirskij Matematicheskij Zhurnal
Alain Grigis (1987)
Annales scientifiques de l'École Normale Supérieure
Izydor Dziubiński (1975)
Annales Polonici Mathematici