The search session has expired. Please query the service again.

Displaying 1661 – 1680 of 6223

Showing per page

Finiteness of meromorphic functions on an annulus sharing four values regardless of multiplicity

Duc Quang Si, An Hai Tran (2020)

Mathematica Bohemica

This paper deals with the finiteness problem of meromorphic funtions on an annulus sharing four values regardless of multiplicity. We prove that if three admissible meromorphic functions f 1 , f 2 , f 3 on an annulus 𝔸 ( R 0 ) share four distinct values regardless of multiplicity and have the complete identity set of positive counting function, then f 1 = f 2 or f 2 = f 3 or f 3 = f 1 . This result deduces that there are at most two admissible meromorphic functions on an annulus sharing a value with multiplicity truncated to level 2 and...

Fischer decompositions in Euclidean and Hermitean Clifford analysis

Freddy Brackx, Hennie de Schepper, Vladimír Souček (2010)

Archivum Mathematicum

Euclidean Clifford analysis is a higher dimensional function theory studying so–called monogenic functions, i.e. null solutions of the rotation invariant, vector valued, first order Dirac operator ̲ . In the more recent branch Hermitean Clifford analysis, this rotational invariance has been broken by introducing a complex structure J on Euclidean space and a corresponding second Dirac operator ̲ J , leading to the system of equations ̲ f = 0 = ̲ J f expressing so-called Hermitean monogenicity. The invariance of this...

Fixed points of meromorphic functions and of their differences and shifts

Zong-Xuan Chen (2013)

Annales Polonici Mathematici

Let f(z) be a finite order transcendental meromorphic function such that λ(1/f(z)) < σ(f(z)), and let c ∈ ℂ∖0 be a constant such that f(z+c) ≢ f(z) + c. We mainly prove that m a x τ ( f ( z ) ) , τ ( Δ c f ( z ) ) = m a x τ ( f ( z ) ) , τ ( f ( z + c ) ) = m a x τ ( Δ c f ( z ) ) , τ ( f ( z + c ) ) = σ ( f ( z ) ) , where τ(g(z)) denotes the exponent of convergence of fixed points of the meromorphic function g(z), and σ(g(z)) denotes the order of growth of g(z).

Flows of Mellin transforms with periodic integrator

Titus Hilberdink (2011)

Journal de Théorie des Nombres de Bordeaux

We study Mellin transforms N ^ ( s ) = 1 - x - s d N ( x ) for which N ( x ) - x is periodic with period 1 in order to investigate ‘flows’ of such functions to Riemann’s ζ ( s ) and the possibility of proving the Riemann Hypothesis with such an approach. We show that, excepting the trivial case where N ( x ) = x , the supremum of the real parts of the zeros of any such function is at least 1 2 .We investigate a particular flow of such functions { N λ ^ } λ 1 which converges locally uniformly to ζ ( s ) as λ 1 , and show that they exhibit features similar to ζ ( s ) . For example, N λ ^ ( s ) ...

Foliations on the complex projective plane with many parabolic leaves

Marco Brunella (1994)

Annales de l'institut Fourier

We prove that a foliation on C P 2 with hyperbolic singularities and with “many" parabolic leaves (i.e. leaves without Green functions) is in fact a linear foliation. This is done in two steps: first we prove that there exists an algebraic leaf, using the technique of harmonic measures, then we show that the holonomy of this leaf is linearizable, from which the result follows easily.

Currently displaying 1661 – 1680 of 6223