Cauchy-Leray forms and vector bundles
We apply the Cauchy-Poisson transform to prove some multivariate polynomial inequalities. In particular, we show that if the pluricomplex Green function of a fat compact set E in is Hölder continuous then E admits a Szegö type inequality with weight function with a positive κ. This can be viewed as a (nontrivial) generalization of the classical result for the interval E = [-1,1] ⊂ ℝ.
We study Cegrell classes on compact Kähler manifolds. Our results generalize some theorems of Guedj and Zeriahi (from the setting of surfaces to arbitrary manifolds) and answer some open questions posed by them.
We obtain an extension of Jack-Miller-Mocanu’s Lemma for holomorphic mappings defined in some Reinhardt domains in . Using this result we consider first and second order partial differential subordinations for holomorphic mappings defined on the Reinhardt domain with p ≥ 1.
In this paper the Nijenhuis tensor characteristic distributions on a non-integrable four-dimensional almost complex manifold is investigated for integrability, singularities and equivalence.
A real form of a complex semi-simple Lie group has only finitely many orbits in any given -flag manifold . The complex geometry of these orbits is of interest, e.g., for the associated representation theory. The open orbits generally possess only the constant holomorphic functions, and the relevant associated geometric objects are certain positive-dimensional compact complex submanifolds of which, with very few well-understood exceptions, are parameterized by the Wolf cycle domains in...
For algebraic surfaces, several global Phragmén-Lindelöf conditions are characterized in terms of conditions on their limit varieties. This shows that the hyperbolicity conditions that appeared in earlier geometric characterizations are redundant. The result is applied to the problem of existence of a continuous linear right inverse for constant coefficient partial differential operators in three variables in Beurling classes of ultradifferentiable functions.
In this paper we characterize, in two different ways, the Newton polygons which are jacobian Newton polygons of a plane branch. These characterizations give in particular combinatorial criteria of irreducibility for complex series in two variables and necessary conditions which a complex curve has to satisfy in order to be the discriminant of a complex plane branch.