The Carathéodory distance in strongly pseudoconvex domains.
A new representation of the Cauchy kernel for an arbitrary acute convex cone Γ in ℝⁿ is found. The domain of holomorphy of is described. An estimation of the growth of near the singularities is given.
We confirm a conjecture of Bernstein–Lunts which predicts that the characteristic variety of a generic polynomial vector field has no homogeneous involutive subvarieties besides the zero section and subvarieties of fibers over singular points.
Using the Clifford bundle formalism we show that Frenet equations of classical differential geometry or its spinor version are the appropriate equations of motion for a classical spinning particle. We show that particular values of the curvatures appearing in Darboux bivector of the spinor form of Frenet equations produce a "classical" Dirac-Hestenes equation. Using the concept of multivector Lagrangians and Hamiltonians we provide a Lagrangian and Hamiltonian approach for our theory which then...