A Local Property of L-regular Sets.
Let F be a power series centered at the origin in a real Banach space with radius of uniform convergence ϱ. We show that F is analytic in the open ball B of radius ϱ/√e, and furthermore, the Taylor series of F about any point a ∈ B converges uniformly within every closed ball centered at a contained in B.
Tuboids are tube-like domains which have a totally real edge and look asymptotically near the edge as a local tube over a convex cone. For such domains we state an analogue of Cartan’s theorem on the holomorphic convexity of totally real domains in .
A version of the classical Nakai-Moishezon criterion is proved for all compact complex surfaces, regardless of the parity of the first Betti number.
Let H²(bΩ) be the Hardy space of a bounded weakly pseudoconvex domain in . The natural resolution of this space, provided by the tangential Cauchy-Riemann complex, is used to show that H²(bΩ) has the important localization property known as Bishop’s property (β). The paper is accompanied by some applications, previously known only for Bergman spaces.
We prove that an analytic surface in a neighborhood of the origin in satisfies the local Phragmén-Lindelöf condition at the origin if and only if satisfies the following two conditions: (1) is nearly hyperbolic; (2) for each real simple curve in and each , the (algebraic) limit variety satisfies the strong Phragmén-Lindelöf condition. These conditions are also necessary for any pure -dimensional analytic variety to satisify .
In this paper, the standard almost complex structure on the tangent bunle of a Riemannian manifold will be generalized. We will generalize the standard one to the new ones such that the induced -tensor on the tangent bundle using these structures and Liouville -form will be a Riemannian metric. Moreover, under the integrability condition, the curvature operator of the base manifold will be classified.
Let D be a domain in ℂⁿ. We introduce a class of pluripolar sets in D which is essentially contained in the class of complete pluripolar sets. An application of this new class to the problem of approximation of holomorphic functions is also given.