Displaying 141 – 160 of 607

Showing per page

A lower bound on the radius of analyticity of a power series in a real Banach space

Timothy Nguyen (2009)

Studia Mathematica

Let F be a power series centered at the origin in a real Banach space with radius of uniform convergence ϱ. We show that F is analytic in the open ball B of radius ϱ/√e, and furthermore, the Taylor series of F about any point a ∈ B converges uniformly within every closed ball centered at a contained in B.

A microlocal version of Cartan-Grauert's theorem

I. V. Maresin, A. G. Sergeev (1998)

Annales Polonici Mathematici

Tuboids are tube-like domains which have a totally real edge and look asymptotically near the edge as a local tube over a convex cone. For such domains we state an analogue of Cartan’s theorem on the holomorphic convexity of totally real domains in n n .

A natural localization of Hardy spaces in several complex variables

Mihai Putinar, Roland Wolff (1997)

Annales Polonici Mathematici

Let H²(bΩ) be the Hardy space of a bounded weakly pseudoconvex domain in n . The natural resolution of this space, provided by the tangential Cauchy-Riemann complex, is used to show that H²(bΩ) has the important localization property known as Bishop’s property (β). The paper is accompanied by some applications, previously known only for Bergman spaces.

A new characterization of the analytic surfaces in 3 that satisfy the local Phragmén-Lindelöf condition

Rüdiger W. Braun, Reinhold Meise, B. A. Taylor (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

We prove that an analytic surface V in a neighborhood of the origin in 3 satisfies the local Phragmén-Lindelöf condition PL loc at the origin if and only if V satisfies the following two conditions: (1) V is nearly hyperbolic; (2) for each real simple curve γ in 3 and each d 1 , the (algebraic) limit variety T γ , d V satisfies the strong Phragmén-Lindelöf condition. These conditions are also necessary for any pure k -dimensional analytic variety V to satisify PL loc .

A new class of almost complex structures on tangent bundle of a Riemannian manifold

Amir Baghban, Esmaeil Abedi (2018)

Communications in Mathematics

In this paper, the standard almost complex structure on the tangent bunle of a Riemannian manifold will be generalized. We will generalize the standard one to the new ones such that the induced ( 0 , 2 ) -tensor on the tangent bundle using these structures and Liouville 1 -form will be a Riemannian metric. Moreover, under the integrability condition, the curvature operator of the base manifold will be classified.

A new class of pluripolar sets

Nguyen Quang Dieu, Tang Van Long (2007)

Annales Polonici Mathematici

Let D be a domain in ℂⁿ. We introduce a class of pluripolar sets in D which is essentially contained in the class of complete pluripolar sets. An application of this new class to the problem of approximation of holomorphic functions is also given.

Currently displaying 141 – 160 of 607