Displaying 61 – 80 of 108

Showing per page

Puiseux Expansion of a Cuspidal Singularity

Maciej Borodzik (2012)

Bulletin of the Polish Academy of Sciences. Mathematics

We present an effective and elementary method of determining the topological type of a cuspidal plane curve singularity with given local parametrization.

Racines de polynômes de Bernstein

Pierrette Cassou-Noguès (1986)

Annales de l'institut Fourier

On considère un polynôme P , à coefficients réels non négatifs, à deux indéterminées. On montre que la connaissance des pôles des intégrales 0 1 0 1 x 1 β 1 - 1 x 2 β 2 - 1 P ( x 1 , x 2 ) s d x 1 d x 2 donne des renseignements sur les racines du polynômes de Bernstein de P . La détermination des pôles des intégrales peut se faire en utilisant certaines méthodes de Mellin. Des calculs explicites sont donnés.

Sets in N with vanishing global extremal function and polynomial approximation

Józef Siciak (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

Let Γ be a non-pluripolar set in N . Let f be a function holomorphic in a connected open neighborhood G of Γ . Let { P n } be a sequence of polynomials with deg P n d n ( d n < d n + 1 ) such that lim sup n | f ( z ) - P n ( z ) | 1 / d n < 1 , z Γ . We show that if lim sup n | P n ( z ) | 1 / d n 1 , z E , where E is a set in N such that the global extremal function V E 0 in N , then the maximal domain of existence G f of f is one-sheeted, and lim sup n f - P n K 1 d n < 1 for every compact set K G f . If, moreover, the sequence { d n + 1 / d n } is bounded then G f = N .If E is a closed set in N then V E 0 if and only if each series of homogeneous polynomials j = 0 Q j , for which some subsequence { s n k } ...

Solution d'une conjecture de C. Berenstein - A. Yger et invariants de contact à l'infini

Michel Hickel (2001)

Annales de l’institut Fourier

Soient k un corps commutatif et I = ( p 1 , , p m ) k n [ X ] un idéal de l’anneau des polynômes k [ X 1 , , X n ] (éventuellement I = k n [ X ] ). Nous prouvons une conjecture de C. Berenstein - A. Yger qui affirme que pour tout polynôme p , élément de la clôture intégrale I ¯ de l’idéal I , on a une représentation p m = 1 i m p i q i , avec max deg ( q i p i ) m deg p + m d 1 d m , d i = deg p i , 1 i m .

Sur la composition de séries formelles à croissance contrôlée

Augustin Mouze (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Let F be a holomorphic map from s to s defined in a neighborhood of zero such that F ( 0 ) = 0 . If the jacobian determinant of F is not identically zero, P. M. Eakin and G. A. Harris proved the following result: any formal power series 𝒜 such that 𝒜 F is analytic is itself analytic. If the jacobian determinant of F is identically zero, they proved that the previous conclusion is no more true. J. Chaumat and A.-M. Chollet extended this result in the case of formal power series satisfying growth conditions, of...

The distribution of extremal points for Kergin interpolations : real case

Thomas Bloom, Jean-Paul Calvi (1998)

Annales de l'institut Fourier

We show that a convex totally real compact set in n admits an extremal array for Kergin interpolation if and only if it is a totally real ellipse. (An array is said to be extremal for K when the corresponding sequence of Kergin interpolation polynomials converges uniformly (on K ) to the interpolated function as soon as it is holomorphic on a neighborhood of K .). Extremal arrays on these ellipses are characterized in terms of the distribution of the points and the rate of convergence is investigated....

Currently displaying 61 – 80 of 108