Page 1

Displaying 1 – 12 of 12

Showing per page

Some properties of Reinhardt domains

Le Mau Hai, Nguyen Quang Dieu, Nguyen Huu Tuyen (2003)

Annales Polonici Mathematici

We first establish the equivalence between hyperconvexity of a fat bounded Reinhardt domain and the existence of a Stein neighbourhood basis of its closure. Next, we give a necessary and sufficient condition on a bounded Reinhardt domain D so that every holomorphic mapping from the punctured disk Δ * into D can be extended holomorphically to a map from Δ into D.

Steinness of bundles with fiber a Reinhardt bounded domain

Karl Oeljeklaus, Dan Zaffran (2006)

Bulletin de la Société Mathématique de France

Let E denote a holomorphic bundle with fiber D and with basis B . Both D and B are assumed to be Stein. For D a Reinhardt bounded domain of dimension d = 2 or 3 , we give a necessary and sufficient condition on D for the existence of a non-Stein such E (Theorem 1 ); for d = 2 , we give necessary and sufficient criteria for E to be Stein (Theorem 2 ). For D a Reinhardt bounded domain of any dimension not intersecting any coordinate hyperplane, we give a sufficient criterion for E to be Stein (Theorem 3 ).

Sur la transformation de Fourier-Laurent dans un groupe analytique complexe réductif

Michel Lassalle (1978)

Annales de l'institut Fourier

Soit H un groupe analytique compact : son complexifié universel G est un groupe analytique complexe réductif. On introduit dans G une classe de “domaines de Reinhardt généralisés”, bi-invariants par H et caractérisés par une “base”, définie dans une sous-algèbre abélienne maximale de l’algèbre de Lie du groupe H et invariante par le groupe de Weyl.On donne une caractérisation par leurs coefficients de Fourier-Laurent des fonctions holomorphes dans un tel domaine. On montre que l’enveloppe d’holomorphie...

Currently displaying 1 – 12 of 12

Page 1