Temlyakovsche Integraldarstellungen.
Page 1
Robert Burkhard Braun (1974)
Mathematische Annalen
G. Mengotti (2001)
Studia Mathematica
We introduce the Bloch space for the minimal ball and we prove that this space can be identified with the dual of a certain analytic space which is strongly related to the Bergman theory on the minimal ball.
Jakóbczak, Piotr (1993)
Portugaliae mathematica
Peter Heinzner, Patrick Schützdeller (2004)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Let be the open upper light cone in with respect to the Lorentz product. The connected linear Lorentz group acts on and therefore diagonally on the -fold product where We prove that the extended future tube is a domain of holomorphy.
Hyeseon Kim, Atsushi Yamamori (2018)
Czechoslovak Mathematical Journal
We consider a certain class of unbounded nonhyperbolic Reinhardt domains which is called the twisted Fock-Bargmann-Hartogs domains. By showing Cartan's linearity theorem for our unbounded nonhyperbolic domains, we give a complete description of the automorphism groups of twisted Fock-Bargmann-Hartogs domains.
C.L. Childress, G.L. Csordas (1978)
Mathematica Scandinavica
Ryuichi Ishimura, Yasunori Okada (1996)
Banach Center Publications
Peter Pflug, Wlodzimierz Zwonek (2004)
Annales de l’institut Fourier
The Serre problem is solved for fiber bundles whose fibers are two-dimensional pseudoconvex hyperbolic Reinhardt domains.
Nancy K. Stanton (1981/1982)
Inventiones mathematicae
Carmichael, Richard D. (1983/1984)
Portugaliae mathematica
André Galligo (1979)
Annales de l'institut Fourier
À l’aide d’un théorème de division de séries entières convergentes avec estimation des normes sur un système fondamental de polydisques, on démontre un théorème de “passage du formel au convergent”. Ceci nous permet d’étudier les morphismes stables et plats entre germes d’espaces analytiques singuliers.
Klas Diederich, John Eric Fornaess (1982)
Mathematische Annalen
Aline Bonami (2002)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
It has been known for a long time that the Szegö projection of tube domains over irreducible symmetric cones is unbounded in for . Indeed, this is a consequence of the fact that the characteristic function of a disc is not a Fourier multiplier, a fundamental theorem proved by C. Fefferman in the 70’s. The same problem, related to the Bergman projection, deserves a different approach. In this survey, based on joint work of the author with D. Békollé, G. Garrigós, M. Peloso and F. Ricci, we give...
N. L. Vasilevskii (1988)
Matematički Vesnik
Harald Upmeier (1997)
Banach Center Publications
In this survey article we describe how the recent work in quantization in multi-variable complex geometry (domains of holomorphy, symmetric domains, tube domains, etc.) leads to interesting results and problems in C*-algebras which can be viewed as examples of the "non-commutative geometry" in the sense of A. Connes. At the same time, one obtains new functional calculi (of pseudodifferential type) with possible applications to partial differential equations and group representations.
James Stewart, Saleem Watson (1985)
Mathematische Annalen
Umberto Sampieri (1985)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Si dà una caratterizzazione completa per tracce di funzioni olomorfe a quadrato sommabile per particolari misure su domini tubolari.
Martin L. Karel (1981)
Mathematische Annalen
Jacques Bros, D. Iagolnitzer (1976)
Annales de l'institut Fourier
On introduit une classe de domaines dans appelés tuboïdes. Un tuboïde de profil est un domaine de dont chaque fibre (dans admet comme cône tangent à l’origine.On montre dans la première partie que l’enveloppe d’holomorphie d’un tuboïde de profil où est pour tout l’enveloppe convexe de . dans la deuxième partie, l’on montre alors que tout tuboïde dont le profil a toutes ses fibres convexes contient un tuboïde de même profil qui est de plus un domaine d’holomorphie....
Page 1