Page 1

Displaying 1 – 19 of 19

Showing per page

The Bloch space for the minimal ball

G. Mengotti (2001)

Studia Mathematica

We introduce the Bloch space for the minimal ball and we prove that this space can be identified with the dual of a certain analytic space which is strongly related to the Bergman theory on the minimal ball.

The extended future tube conjecture for SO(1, 𝑛 )

Peter Heinzner, Patrick Schützdeller (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Let C be the open upper light cone in 1 + n with respect to the Lorentz product. The connected linear Lorentz group SO ( 1 , n ) 0 acts on C and therefore diagonally on the N -fold product T N where T = 1 + n + i C 1 + n . We prove that the extended future tube SO ( 1 , n ) · T N is a domain of holomorphy.

The holomorphic automorphism groups of twisted Fock-Bargmann-Hartogs domains

Hyeseon Kim, Atsushi Yamamori (2018)

Czechoslovak Mathematical Journal

We consider a certain class of unbounded nonhyperbolic Reinhardt domains which is called the twisted Fock-Bargmann-Hartogs domains. By showing Cartan's linearity theorem for our unbounded nonhyperbolic domains, we give a complete description of the automorphism groups of twisted Fock-Bargmann-Hartogs domains.

The Serre problem with Reinhardt fibers

Peter Pflug, Wlodzimierz Zwonek (2004)

Annales de l’institut Fourier

The Serre problem is solved for fiber bundles whose fibers are two-dimensional pseudoconvex hyperbolic Reinhardt domains.

Théorème de division et stabilité en géométrie analytique locale

André Galligo (1979)

Annales de l'institut Fourier

À l’aide d’un théorème de division de séries entières convergentes avec estimation des normes sur un système fondamental de polydisques, on démontre un théorème de “passage du formel au convergent”. Ceci nous permet d’étudier les morphismes stables et plats entre germes d’espaces analytiques singuliers.

Three related problems of Bergman spaces of tube domains over symmetric cones

Aline Bonami (2002)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

It has been known for a long time that the Szegö projection of tube domains over irreducible symmetric cones is unbounded in L p for p 2 . Indeed, this is a consequence of the fact that the characteristic function of a disc is not a Fourier multiplier, a fundamental theorem proved by C. Fefferman in the 70’s. The same problem, related to the Bergman projection, deserves a different approach. In this survey, based on joint work of the author with D. Békollé, G. Garrigós, M. Peloso and F. Ricci, we give...

Toeplitz-Berezin quantization and non-commutative differential geometry

Harald Upmeier (1997)

Banach Center Publications

In this survey article we describe how the recent work in quantization in multi-variable complex geometry (domains of holomorphy, symmetric domains, tube domains, etc.) leads to interesting results and problems in C*-algebras which can be viewed as examples of the "non-commutative geometry" in the sense of A. Connes. At the same time, one obtains new functional calculi (of pseudodifferential type) with possible applications to partial differential equations and group representations.

Traces of functions in Bergman weighted spaces on tubular domains

Umberto Sampieri (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si dà una caratterizzazione completa per tracce di funzioni olomorfe a quadrato sommabile per particolari misure su domini tubolari.

Tuboïdes dans 𝐂 n et généralisation d’un théorème de Cartan et Grauert

Jacques Bros, D. Iagolnitzer (1976)

Annales de l'institut Fourier

On introduit une classe de domaines dans C ( z ) n = R ( x ) n × R ( y ) n appelés tuboïdes. Un tuboïde D = x Ω ( x , D x ) de profil Λ = x Ω ( x , Λ x ) est un domaine de C ( z ) n dont chaque fibre D x (dans R ( y ) n ) admet Λ x comme cône tangent à l’origine.On montre dans la première partie que l’enveloppe d’holomorphie d’un tuboïde D ^ de profil Λ ^ = x Ω ( x , Λ ^ x ) Λ ^ x est pour tout x l’enveloppe convexe de Λ x . dans la deuxième partie, l’on montre alors que tout tuboïde D dont le profil Λ a toutes ses fibres Λ x convexes contient un tuboïde D ' de même profil qui est de plus un domaine d’holomorphie....

Currently displaying 1 – 19 of 19

Page 1