Einige elementare Ungleichungen für Exponentialpolynome.
We study polynomial iterative roots of polynomials and describe the locus of complex polynomials of degree 4 admitting a polynomial iterative square root.
We study the growth of parameter-dependent entire functions. We are mainly interested in the case where the functions depend holomorphically on the parameter.
A necessary and sufficient condition is obtained for a discrete multiplicity variety to be an interpolating variety for the space .
We prove in this paper that a given discrete variety V in Cn is an interpolating variety for a weight p if and only if V is a subset of the variety {ξ ∈ Cn: f1(ξ) = f2(ξ) = ... = fn(ξ) = 0} of m functions f1, ..., fm in the weighted space the sum of whose directional derivatives in absolute value is not less than ε exp(-Cp(ζ)), ζ ∈ V for some constants ε, C > 0. The necessary and sufficient conditions will be also given in terms of the Jacobian matrix of f1, ..., fm. As a corollary, we solve...
In questa nota, si studiano problemi di interpolazione per varietà discrete in spazi di funzioni olomorfe in coni. In particolare si mostra come sia possibile estendere il Principio Fondamentale di Ehrenpreis ad equazioni di convoluzione nella spazio , introdotto in [4] in connessione con problemi di fisica quantistica.
Si estendono qui i risultati della nota precedente al caso di varietà non discrete. Ciò viene utilizzato per ottenere un teorema di rappresentazione per soluzioni di sistemi di equazioni di convoluzione in spazi di funzioni olomorfe in coni.
We discuss existence of global solutions of moderate growth to a linear partial differential equation with constant coefficients whose total symbol P(ξ) has the origin as its only real zero. It is well known that for such equations, global solutions tempered in the sense of Schwartz reduce to polynomials. This is a generalization of the classical Liouville theorem in the theory of functions. In our former work we showed that for infra-exponential growth the corresponding assertion is true if and...