The area of analytic varieties in C...
We consider the (characteristic and non-characteristic) Cauchy problem for a system of constant coefficients partial differential equations with initial data on an affine subspace of arbitrary codimension. We show that evolution is equivalent to the validity of a principle on the complex characteristic variety and we study the relationship of this condition with the one introduced by Hörmander in the case of scalar operators and initial data on a hypersurface.
We consider the solution operator to the -operator restricted to forms with coefficients in . Here denotes -forms with coefficients in , is the corresponding -space and is a suitable rotation-invariant absolutely continuous finite measure. We will develop a general solution formula to . This solution operator will have the property . As an application of the solution formula we will be able to characterize compactness of the solution operator in terms of compactness of commutators...