Page 1

Displaying 1 – 4 of 4

Showing per page

Familias compactas de funciones holomorfas con desarrollo asintótico en abierto de Cn.

Piedad Guijarro Carranza (1986)

Stochastica

Let U be an open convex subset of Cn, n belonging to N, such that the set of all polinomies is dense in the space of all holomorphic and complex functions on U, (H(U), t0), where t0 is the open-compact topology.We endow the space HK(U) of all holomorphic functions on U that have asymptotic expansion at the origin with a metric and we study a particular compact subset of HK(U).

Finitely generated ideals in A ( ω )

John Erik Fornaess, M. Ovrelid (1983)

Annales de l'institut Fourier

The Gleason problem is solved on real analytic pseudoconvex domains in C 2 . In this case the weakly pseudoconvex points can be a two-dimensional subset of the boundary. To reduce the Gleason problem to a question it is shown that the set of Kohn-Nirenberg points is at most one-dimensional. In fact, except for a one-dimensional subset, the weakly pseudoconvex boundary points are R -points as studied by Range and therefore allow local sup-norm estimates for .

Currently displaying 1 – 4 of 4

Page 1