Factoriality of a ring of holomorphic functions
Let U be an open convex subset of Cn, n belonging to N, such that the set of all polinomies is dense in the space of all holomorphic and complex functions on U, (H(U), t0), where t0 is the open-compact topology.We endow the space HK(U) of all holomorphic functions on U that have asymptotic expansion at the origin with a metric and we study a particular compact subset of HK(U).
The Gleason problem is solved on real analytic pseudoconvex domains in . In this case the weakly pseudoconvex points can be a two-dimensional subset of the boundary. To reduce the Gleason problem to a question it is shown that the set of Kohn-Nirenberg points is at most one-dimensional. In fact, except for a one-dimensional subset, the weakly pseudoconvex boundary points are -points as studied by Range and therefore allow local sup-norm estimates for .