Rapport sur le prolongement analytique dans les corps values complets par la méthode des éléments analytiques quasi-connexes
We consider the set of representing measures at 0 for the disc and the ball algebra. The structure of the extreme elements of these sets is investigated. We give particular attention to representing measures for the 2-ball algebra which arise by lifting representing measures for the disc algebra.
The classical Riemann Mapping Theorem states that a nontrivial simply connected domain Ω in ℂ is holomorphically homeomorphic to the open unit disc 𝔻. We also know that "similar" one-dimensional Riemann surfaces are "almost" holomorphically equivalent. We discuss the same problem concerning "similar" domains in ℂⁿ in an attempt to find a multidimensional quantitative version of the Riemann Mapping Theorem