Classificazione dei domini di Hartogs di che soddisfano l'equazione
I give a characterization of the pseudoconvex Hartogs domains in that satisfy the equation , where is the second cohomology group of with coefficients in the constant sheaf .
I give a characterization of the pseudoconvex Hartogs domains in that satisfy the equation , where is the second cohomology group of with coefficients in the constant sheaf .
Let be a coherent subsheaf of a locally free sheaf and suppose that has pure codimension. Starting with a residue current obtained from a locally free resolution of we construct a vector-valued Coleff-Herrera current with support on the variety associated to such that is in if and only if . Such a current can also be derived algebraically from a fundamental theorem of Roos about the bidualizing functor, and the relation between these two approaches is discussed. By a construction...
We study a certain operator of multiplication by monomials in the weighted Bergman space both in the unit disk of the complex plane and in the polydisk of the -dimensional complex plane. Characterization of the commutant of such operators is given.
The characteristic function for a contraction is a classical complete unitary invariant devised by Sz.-Nagy and Foiaş. Just as a contraction is related to the Szegö kernel for |z|,|w| < 1, by means of , we consider an arbitrary open connected domain Ω in ℂⁿ, a complete Pick kernel k on Ω and a tuple T = (T₁, ..., Tₙ) of commuting bounded operators on a complex separable Hilbert space ℋ such that (1/k)(T,T*) ≥ 0. For a complete Pick kernel the 1/k functional calculus makes sense in a beautiful...
We give a concrete description of complex symmetric monomial Toeplitz operators on the weighted Bergman space , where denotes the unit ball or the unit polydisk. We provide a necessary condition for to be complex symmetric. When , we prove that is complex symmetric on if and only if and . Moreover, we completely characterize when monomial Toeplitz operators on are -symmetric with the symmetric unitary matrix .