Schatten class Toeplitz operators on weighted Bergman spaces of the unit ball.
We characterize the Schatten class weighted composition operators on Bergman spaces of bounded strongly pseudoconvex domains in terms of the Berezin transform.
Let be an open neighborhood of the origin in and let be complex analytic. Let be a generic linear form on . If the relative polar curve at the origin is irreducible and the intersection number is prime, then there are severe restrictions on the possible degree cohomology of the Milnor fiber at the origin. We also obtain some interesting, weaker, results when is not prime.
We consider separately radial (with corresponding group ) and radial (with corresponding group symbols on the projective space , as well as the associated Toeplitz operators on the weighted Bergman spaces. It is known that the -algebras generated by each family of such Toeplitz operators are commutative (see R. Quiroga-Barranco and A. Sanchez-Nungaray (2011)). We present a new representation theoretic proof of such commutativity. Our method is easier and more enlightening as it shows that the...
Let be a non-pluripolar set in . Let be a function holomorphic in a connected open neighborhood of . Let be a sequence of polynomials with such thatWe show that ifwhere is a set in such that the global extremal function in , then the maximal domain of existence of is one-sheeted, andfor every compact set . If, moreover, the sequence is bounded then .If is a closed set in then if and only if each series of homogeneous polynomials , for which some subsequence ...
We prove the boundedness of the oscillatory singular integrals for arbitrary real-valued functions and for rather general domains whose dependence upon x satisfies no regularity assumptions.
We complete the characterization of singular sets of separately analytic functions. In the case of functions of two variables this was earlier done by J. Saint Raymond and J. Siciak.
Soit un polynôme. On appelle série de Dirichlet associée à la fonction : . Dans cet article nous étudions l’existence et les propriétés du prolongement méromorphe d’une telle série sous l’hypothèse qu’il existe tel que : i) quand et et ii) où . Cette hypothèse est probablement optimale et en tout cas contient strictement toutes les classes de polynômes déjà traitées antérieurement. Sous cette hypothèse nos principaux résultats sont : l’existence du prolongement méromorphe au plan...
Soient un corps commutatif et un idéal de l’anneau des polynômes (éventuellement ). Nous prouvons une conjecture de C. Berenstein - A. Yger qui affirme que pour tout polynôme , élément de la clôture intégrale de l’idéal , on a une représentationoù .
Il est montré que la condition de Blaschke est nécessaire et suffisante pour qu’un sous-ensemble analytique du domaine soit l’ensemble des zéros d’une fonction de la classe de Nevanlinna.