Page 1 Next

Displaying 1 – 20 of 45

Showing per page

Racines de polynômes de Bernstein

Pierrette Cassou-Noguès (1986)

Annales de l'institut Fourier

On considère un polynôme P , à coefficients réels non négatifs, à deux indéterminées. On montre que la connaissance des pôles des intégrales 0 1 0 1 x 1 β 1 - 1 x 2 β 2 - 1 P ( x 1 , x 2 ) s d x 1 d x 2 donne des renseignements sur les racines du polynômes de Bernstein de P . La détermination des pôles des intégrales peut se faire en utilisant certaines méthodes de Mellin. Des calculs explicites sont donnés.

Regular holomorphic images of balls

John Erik Fornaess, Edgar Lee Stout (1982)

Annales de l'institut Fourier

Every n -dimensional complex manifold (connected, paracompact and Hausdorff) is the image of the unit ball in C n under a finite holomorphic map that is locally biholomorphic.

Remarks on the balanced metric on Hartogs triangles with integral exponent

Qiannan Zhang, Huan Yang (2023)

Czechoslovak Mathematical Journal

In this paper we study the balanced metrics on some Hartogs triangles of exponent γ + , i.e., Ω n ( γ ) = { z = ( z 1 , , z n ) n : | z 1 | 1 / γ < | z 2 | < < | z n | < 1 } equipped with a natural Kähler form ω g ( μ ) : = 1 2 ( i / π ) ¯ Φ n with Φ n ( z ) = - μ 1 ln ( | z 2 | 2 γ - | z 1 | 2 ) - i = 2 n - 1 μ i ln ( | z i + 1 | 2 - | z i | 2 ) - μ n ln ( 1 - | z n | 2 ) , where μ = ( μ 1 , , μ n ) , μ i > 0 , depending on n parameters. The purpose of this paper is threefold. First, we compute the explicit expression for the weighted Bergman kernel function for ( Ω n ( γ ) , g ( μ ) ) and we prove that g ( μ ) is balanced if and only if μ 1 > 1 and γ μ 1 is an integer, μ i are integers such that μ i 2 for all i = 2 , ... , n - 1 , and μ n > 1 . Second, we prove that g ( μ ) is Kähler-Einstein if and only if μ 1 = μ 2 = = μ n = 2 λ , where λ is a nonzero...

Currently displaying 1 – 20 of 45

Page 1 Next