A multi-dimensional spectral theory in C*-algebras
Let H²(bΩ) be the Hardy space of a bounded weakly pseudoconvex domain in . The natural resolution of this space, provided by the tangential Cauchy-Riemann complex, is used to show that H²(bΩ) has the important localization property known as Bishop’s property (β). The paper is accompanied by some applications, previously known only for Bergman spaces.
We introduce a new invariant Kähler metric on relatively compact domains in a complex manifold, which is the Bergman metric of the L² space of holomorphic sections of the pluricanonical bundle equipped with the Hermitian metric introduced by Narasimhan-Simha.
We give upper and lower bounds for constants appearing in the L²-estimates for the ∂̅-operator due to Donnelly-Fefferman and Berndtsson.
We begin this article with a graph theorem and a kind of Nullstellensatz for weakly holomorphic functions. This yields a general Nullstellensatz for c-holomorphic functions on locally irreducible sets. In Section 2 some methods of Płoski-Tworzewski permit us to prove an effective Nullstellensatz for c-holomorphic functions in the case of a proper intersection with the degree of the intersection cycle as exponent. We also extend this result to the case of isolated improper intersection, generalizing...
For some classes of periodic linear ordinary differential equations and functional equations, it is known that the existence of a bounded solution in the future implies the existence of a periodic solution. In order to think on such phenomena for hyperfunction solutions to linear functional equations, we introduced a notion of bounded hyperfunctions, and translated the problems into the problems on analytic solutions to some equations in complex domains. In this article, after...
Let be a bounded, simply connected -convex domain. Let and let be a function on which is separately -smooth with respect to (by which we mean jointly -smooth with respect to , ). If is -analytic on , then is -analytic on . The result is well-known for the case , , even when a priori is only known to be continuous.