Travaux de H. Skoda sur la classe de Nevanlinna
Pseudoconvex domains are exhausted in such a way that we keep a part of the boundary fixed in all the domains of the exhaustion. This is used to solve a problem concerning whether the generators for the ideal of either the holomorphic functions continuous up to the boundary or the bounded holomorphic functions, vanishing at a point in where the fibre is nontrivial, has to exceed . This is shown not to be the case.
On introduit une classe de domaines dans appelés tuboïdes. Un tuboïde de profil est un domaine de dont chaque fibre (dans admet comme cône tangent à l’origine.On montre dans la première partie que l’enveloppe d’holomorphie d’un tuboïde de profil où est pour tout l’enveloppe convexe de . dans la deuxième partie, l’on montre alors que tout tuboïde dont le profil a toutes ses fibres convexes contient un tuboïde de même profil qui est de plus un domaine d’holomorphie....
Let be the class of all continuous functions on the annulus in with twisted spherical mean whenever and satisfy the condition that the sphere and ball In this paper, we give a characterization for functions in in terms of their spherical harmonic coefficients. We also prove support theorems for the twisted spherical means in which improve some of the earlier results.
It is shown that the weak multidimensional Suita conjecture fails for any bounded non-pseudoconvex domain with -smooth boundary. On the other hand, it is proved that the weak converse to the Suita conjecture holds for any finitely connected planar domain.
We give some explicit values of the constants and in the inequality where denotes the norm of the Bergman projection on the space.