Automorphisms on the spaces of entire functions of several variables over non-archimedean fields.
Let D be a hyperbolic convex domain in a complex Banach space. Let the mapping F ∈ Hol(D,D) be bounded on each subset strictly inside D, and have a nonempty fixed point set ℱ in D. We consider several methods for constructing retractions onto ℱ under local assumptions of ergodic type. Furthermore, we study the asymptotic behavior of the Cesàro averages of one-parameter semigroups generated by holomorphic mappings.
Let Ω be a domain in Cn. It is known that a holomorphic function on Ω behaves better in complex tangential directions. When Ω is of finite type, the best possible improvement is quantified at each point by the distance to the boundary in the complex tangential directions (see the papers on the geometry of finite type domains of Catlin, Nagel-Stein and Wainger for precise definition). We show that this improvement is characteristic: for a holomorphic function, a regularity in complex tangential directions...
The standard Berezin and Berezin-Toeplitz quantizations on a Kähler manifold are based on operator symbols and on Toeplitz operators, respectively, on weighted L2-spaces of holomorphic functions (weighted Bergman spaces). In both cases, the construction basically uses only the fact that these spaces have a reproducing kernel. We explore the possibilities of using other function spaces with reproducing kernels instead, such as L2-spaces of harmonic functions, Sobolev spaces, Sobolev spaces of holomorphic...
We give an equivalent condition for Bergman completeness of Zalcman type domains. This also solves a problem stated by Pflug.