Loading [MathJax]/extensions/MathZoom.js
Displaying 41 –
60 of
115
By an open neighbourhood in ℂⁿ of an open subset Ω of ℝⁿ we mean an open subset Ω' of ℂⁿ such that ℝⁿ ∩ Ω' = Ω. A well known result of H. Grauert implies that any open subset of ℝⁿ admits a fundamental system of Stein open neighbourhoods in ℂⁿ. Another way to state this property is to say that each open subset of ℝⁿ is Stein. We shall prove a similar result in the subanalytic category: every subanalytic open subset in a paracompact real analytic manifold M admits a fundamental system of subanalytic...
The key result (Theorem 1) provides the existence of a holomorphic approximation map for some space of C∞-functions on an open subset of Rn. This leads to results about the existence of a continuous linear extension map from the space of the Whitney jets on a closed subset F of Rn into a space of holomorphic functions on an open subset D of Cn such that D ∩ Rn = RnF.
Un sous-ensemble pfaffien d’un ouvert semi-analytique est une intersection finie d’ensembles semi-analytiques relativement compacts de et de feuilles non spiralantes de certains feuilletages analytiques de codimension 1 de Les sous-ensembles semi-pfaffiens de sont les éléments de la plus petite classe de sous-ensembles de contenant les sous-ensembles pfaffiens de , stable par intersection finie, réunion finie et différence symétrique. Les ensembles -pfaffiens sont les éléments de la...
Il est bien connu que l’image d’une application analytique complexe semi-propre est un ensemble analytique; dans le cas réel elle est en général sous-analytique. Dans cet article on donne des conditions pour la semi-analyticité de l’image d’une application analytique réelle, semi-propre qui admet une complexification semi-propre.
Currently displaying 41 –
60 of
115