Loading [MathJax]/extensions/MathZoom.js
Displaying 81 –
100 of
100
We give a special normal form for a non-semiquadratic hyperbolic CR-manifold M of codimension 2 in ℂ⁴, i.e., a construction of coordinates where the equation of M satisfies certain conditions. The coordinates are determined up to a linear coordinate change.
In this paper we consider non-normalized univalent subordination chains and the connection with the Loewner differential equation on the unit ball in . To this end, we study the most general form of the initial value problem for the transition mapping, and prove the existence and uniqueness of solutions. Also we introduce the notion of generalized spirallikeness with respect to a measurable matrix-valued mapping, and investigate this notion from the point of view of non-normalized univalent subordination...
In this paper we study Kähler manifolds that are strongly not relative to any projective Kähler manifold, i.e. those Kähler manifolds that do not share a Kähler submanifold with any projective Kähler manifold even when their metric is rescaled by the multiplication by a positive constant. We prove two results which highlight some relations between this property and the existence of a full Kähler immersion into the infinite dimensional complex projective space. As application we get that the 1-parameter...
The aim of this paper is to start a systematic investigation of the existence of angular limits and angular derivatives of holomorphic maps of infinite dimensional Siegel domains in -algebras. Since -algebras are natural generalizations of -algebras, -algebras, -algebras, ternary algebras and complex Hilbert spaces, various significant results follow. Examples are given.
We give a simple proof of the result that if D is a (not necessarily bounded) hyperbolic convex domain in then the set V of fixed points of a holomorphic map f:D → D is a connected complex submanifold of D; if V is not empty, V is a holomorphic retract of D. Moreover, we extend these results to the case of convex domains in a locally convex Hausdorff vector space.
The paper contains the formulation of the problem and an almost up-to-date survey of some results in the area.
Generalizations of the theorem of Forelli to holomorphic mappings into complex spaces are given.
Un exemple de Lattès est un endomorphisme holomorphe de l’espace projectif complexe qui se relève en une dilatation de l’espace affine de même dimension au moyen d’un revêtement ramifié sur les fibres duquel un groupe cristallographique agit transitivement. Nous montrons que tout endomorphisme holomorphe d’un espace projectif complexe dont le courant de Green est lisse et strictement positif sur un ouvert non vide est nécessairement un exemple de Lattès.
This paper is concerned with the problem of extension of separately holomorphic mappings defined on a "generalized cross" of a product of complex analytic spaces with values in a complex analytic space.
The crosses considered here are inscribed in Borel rectangles (of a product of two complex analytic spaces) which are not necessarily open but are non-pluripolar and can be quite small from the topological point of view.
Our first main result says that the singular...
We study analytic families of non-compact cycles, and prove there exists an analytic space of finite dimension, which gives a universal reparametrization of such a family, under some assumptions of regularity. Then we prove an analogous statement for meromorphic families of non-compact cycles. That is a new approach to Grauert’s results about meromorphic equivalence relations.
In this paper we introduce the notion of weak normal and quasinormal families of holomorphic curves from a domain in into projective spaces. We will prove some criteria for the weak normality and quasinormality of at most a certain order for such families of holomorphic curves.
This paper characterizes the boundedness and compactness of weighted composition operators between a weighted-type space and the Hardy space on the unit ball of ℂⁿ.
Let H() denote the space of all holomorphic functions on the unit ball ⊂ ℂⁿ. Let φ be a holomorphic self-map of and u∈ H(). The weighted composition operator on H() is defined by
.
We investigate the boundedness and compactness of induced by u and φ acting from Zygmund spaces to Bloch (or little Bloch) spaces in the unit ball.
Currently displaying 81 –
100 of
100